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 CHAPTER 9  
  

THEORETICAL BACKGROUND 
 

 

 
 
9.1 Introduction 
 

The model is a simplified copy of the real system which emphasizes its 
important characteristics and neglects secondary characters are not determinant 
from the point of view of the investigation. The abstracted model can be analog, 
homologue and mathematical one. 
 The homologue model is similar to the real system geometrically. For example, 
wind-tunnel models of airfoils or aircraft are homologue models. The analog 
model does not need to be similar to the real system, but its principle has to be 
analog with the process occurring on the real modeled system. As a rule, an analog 
computer means an analog model [27]. 
 
9.2 The Mathematical Model 
 

In the engineering practice the most widespread model is the mathematical one. 
Nowadays, the computer technology and numerical-mathematical methods develop 
quickly and at the same time diagnostics methods that are based upon the 
mathematical modeling become important and developing part of the engineering 
practice. 
 The mathematical model gives the most concise characterization of an 
occurrence [4]. The mathematical model is the mathematical equation or system of 
equations which describes the internal principles of the process occurring on the 
system from the point of view of the given investigation. 
 On the basis of the characters of mathematical equations which describe the 
behavior of the system or their determination, the following mathematical models 
can be distinguished in pairs [15]: 
 
Static - Dynamic 
 

The mathematical model will be a static one if the state of the system can be 
described by algebraical equations or differential equations which do not contain 
derivatives with respect to the time. As a rule, they are called as stationary or 
steady models. 

The dynamic (non-stationary) mathematical models describe the changes of the 
system parameters depending on the time. They can be vulgar or partial 
differential equations. It is possible that the changes of the system parameters can 
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be described by not only on a time interval, but on a transformed domain chosen 
practically. 
 
Linear - Non-linear 
 

The linear models consist of only variables or their derivatives multiplied - in 
general stationary - coefficients. A linear mathematical model can be a linear or 
linearized equation or a system of equations. 

The non-linear mathematical models are free from the requirement mentioned 
above. At least one of the equations which describe process occurs in the system is 
non-linear.  
 For simpler solving and investigation, the non-linear mathematical models can 
be transformed into linear ones (see the Chapter 10.3). 
 
Continuous parameter - Discrete parameter 
 

In case of continuous parameter (continuous time) models the dependent 
variables can have values at every moment of the investigated time interval 
continuously. 

The mathematical model is a discrete parameter (discrete time) one if its 
dependent variables can only have some value at certain moments of the 
investigated time. 
 As a rule, continuous time processes are modeled by discrete time models when 
the equations are solved numerically by any time-shifting. 
 
Continuous state-space - Discrete state-space 
 

If the variables can have all value continuously, the mathematical model is 
called a continuous state-space one. 

A mathematical model is considered  to be of a discrete state-space one if the 
values of the dependent variables constitute a count finite or non-finite set. 
 For easier solving, continuous state-space processes can be transformed to 
discrete state-space one by discretization. 
 
Deterministic - Stochastic 
 

In case of a deterministic model, the dependencies of output parameters on 
input parameters can be described unambiguously in some time internal or domain 
of the independent variables. 

Stochastic (random) mathematical models contain random functions which can 
describe interdependencies between dependent and independent variables of the 
examined system. 
 Obviously the list mentioned above of the kinds of the mathematical models is 
not complete, of course. Mathematical model realized in the engineering practice 
means the synthesis of the above mentioned ones. 
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9.3 Creating Mathematical Model 
 

The logic and the type of the modeling are determined by answers for the 
following question: 
 
 What are the main goals of the investigation based on mathematical 

modeling? 
  
 How can the mathematical model be set up? 
  
 How can the mathematical model be checked and qualified? 
  
 What is the most optimal strategy of the collection of the missing data? 
  
 How can the non-linearity be solved? 
  
 What are the economic and technical requirements? 
  
 Can you experiment with the real system continuously for the checking of 

the model? 
  
 How can the mathematical model be simplified? 
  
 What is the most optimal model for the investigation of the real system? 
 
 The setting up of a real model can be carried out based upon the logical scheme 
that figure 9.1 shows. The possible errors are written in italics [25]. 
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Fig. 9.1. Logical Scheme of Modeling 

 



 CHAPTER  10 
  

METHODOLOGY OF MATHEMATICAL 
DIAGNOSTIC MODELING  
 

 
 
10.1. Introduction 
 

In this chapter the basic methodology of mathematical modeling of technical 
systems will be shown. Since the author’s main goal is to demonstrate it basically 
for engineers who like to use mathematical models during their work, the method 
will be shown in the case of the example shown by Figure 10.1. 
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Figure 10.1. Block and Block-Diagram of the System 
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10.2. The Setting-up of the Mathematical Model 
 

The setting up of mathematical model should start with splitting up the 
investigated system into its functional units. The Figure 10.1. demonstrates this 
step of the modeling. 

Now it is a very important question that which part of the system is  necessary 
for modeling of its investigated regime. For example in case of a stationary regime 
of  pneumatic and hydraulic systems, the filters are not important equipment. 
Because of in this case the pressures in the system have been equalized. But during 
their non-stationary regimes the filters have very important function as chokes 
which influence the change of pressures in several chambers of the system in the 
function of time. 

These above determined units should be examined and the interdependencies 
between their input and output parameters should be established mathematically. In 
the technical practice, the mathematical model can be written basically in two 
ways: 
 
 WHITE BOX METHOD; 
The model should be written by analytical equation on the basis of scientific 
knowledge. In this case you should use physical rules which depict processes 
occurring in the investigated equipment. Using white box method, you have to 
know the working principle and the nominal (designed) values of all internal 
parameters of given system unit. 
 
 BLACK BOX METHOD. 
The model is written by analyzing of the output parameters responded to the given 
input ones. This method should be used if the physical processes occurring in the 
parts of the system and internal structures of equipment is not known. In this case 
the mathematical model should be set-up by the investigation of the behavior of the 
real system. For example one of the black box methods is the dimensional analysis. 

The equations mentioned above form the mathematical model of the system. 
For example (for following demonstrations) this model can be written in the case 
mentioned above, that is the mathematical model of the system see Figure 10.1. : 
 
 Equipment I. : 

αhcα =           (10.1) 
 Equipment II. : 

β++= iaβ           (10.2) 
 Equipment III. : 

κγac =            (10.3) 
 Equipment IV. : 

  
b

kle
k
k

ω
1

2
−

=          (10.4) 
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or in a simpler way: 
 f y g x( ) ( )=           (10.5) 

where: 
 
x - vector of dependent parameters: 

[ ]ecbaxT =   ;      (10.6) 
y - vector of independent parameters: 

[ ]ωγβα lkihyT =    .   (10.7) 
 The elements of the vectors are parameters of the example system - see Figure 
10.1. The α ; β ; γ and ω are internal parameters of equipment (for example 
stiffness of spring or flown area). The a ; b ; c ; e ; h ; i ; k and l are the input and 
output parameters of the given system and equipment (for instance pressures, mass 
flow and power). 
 
10.3. Setting-up of the Linear Mathematical Diagnostic Models 
 

For setting up a linear diagnostic model, the mathematical model which is 
basically a non-linear system of equations should be linearized. For linearization, 
the following methods can be used: 
 
 LOGARITHMIC LINEARIZATION; 
 DIRECT DIFFERENTIATION; 
 TAYLOR SERIES; 
 LIE-MAGNUS SERIES. 
 
 In the following only the logarithnic linearization will be depicted in detail, 
because this method is not well-known. 
 
10.3.1. The Logarithmic Linearization 
 

Using the logarithmic linearization, firstly, the natural logarithm (to e base) of 
both sides of the general non-linear equation 

  );...;( 21 nxxxfy =   ,       (10.8) 
should be formed: 

  );...;(lnln 21 nxxxfy =   .     (10.9) 
 As the next step, the total differential of the latter one should be formed, using 
the basic differential quotient of the natural logarithm: 

                                                         
η

η 1)'(ln =   ,          (10.10) 

and the rule of derivation of the function of functions. We introduce the equation 

i
i

i

i

id dβ
β
β

β
β

=
∆

≈            (10.11) 
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and substitute for the equation given above formally. Then you get the equation 
nn xKxKxKy δδδδ ...2211 ++=   ,       (10.12) 

which describes the relation between relative changes of different variables of the 
original equation (10.8) by a linear form. 
 See the logarithmic linearization of the model set-up above: 
 
 In case of equation (10.1) the natural logarithm of both sides: 

αhcα =  ⇒  αα lnlnln)ln(ln ++== chhcα  .    (10.13) 
The total differential : 

 
α
αd

c
dc

h
dh

α
dα

++=   ,        (10.14) 

then: 
                                                 δαδδδ ++= chα   .         (10.15) 
 
 In case of equation (10.2) : 
                               β++= iaβ   ⇒ )ln(ln β++= iaβ        (10.16) 
The total differential : 

                         β
βββ

d
ia

di
ia

da
iaβ

dβ
++

+
++

+
++

=
111

      (10.17) 

In this case every term should be multiplied by 
x
x

i
i

 : 

             β
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+
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=      (10.18) 
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 In case of equation (10.3): 
                                     κγac =  ⇒ γκ lnlnln += ac         (10.20) 

                                                   
γ
γκ d

a
da

c
dc

+=            (10.21) 

then: 
                                                      κδγδδ += ac   .         (10.22) 
 
 In case of equation (10.4): 

       
b

kle
k
k

ω
1

2
−

=   ⇒ blke lnln1lnln2lnln −
−

+++= ω
k

k
    (10.23) 

the derivative of a constant (ln2) equals zero, that is: 
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         (10.24) 

in other form: 

                                      blke δδω
k

kδδδ −
−

++=
1

          (10.25) 

 The logarithmic linearization should be used in case of thermodynamic models 
and equations because of there are exponential terms. 
 
10.3.2 Direct Differentiation 
 

Using direct differentiation, as a first step, the total differential of both sides of 
the initial equation  
                                             y f x x xn= ( ; ; ... )1 2   ,        (10.26) 
should be formed: 

            n
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Then both sides of the last equation should be multiplied by same sides of the 

general equation and all elements should be multiplied by 
x
x

i
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Using the coefficients: 

                             
);;(
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∂

=         (10.29) 

and equation (10.11), the following linear system can be achieved: 
                                          nn xKxKy δδδ ++= 11   .        (10.30) 

This method is basically suggested if the general equation cannot be 
decomposed to multipliers. 
 
10.3.3. The TAYLOR (LIE-MAGNUS) Series 
 
In this case TAYLOR-series of the general equation 
                                             );( 21 nxxxfy 2=            (10.31) 
should be developed: 
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and its more than first-order terms have to be neglected 

                                          


+∆
∂

∂
=∆ 1

1

1 );( x
x

xxxfy n   .      (10.33) 

Then its both sides should be divided by the same side of the initial equation: 
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n  .     (10.34) 

Using equations (10.11) and (10.29) the following equation can be achieved: 
                                      nn xKxKy δδδ ++= 11   .         (10.35) 

This linearization method can be used if the general equation can be derivable 
any times. The linearization using by TAYLOR series is applied basically in flight-
mechanical investigations. 

The LIE-MAGNUS series method is the so called matrix-form version of the 
TAYLOR series one that can be used for linearization of non-linear system of 
equations. This method uses the derivation matrix to derive the initial system of 
equations. 
 
10.3.4. The Diagnostic Matrix 
 

The equations (10.15) ; (10.19) ; (10.22) and (10.25) form a system of equations 
that is the linear (linearized) mathematical diagnostic model of system shown by 
Figure 10.1. 

The linear system of equations achieved in this way describes interdependencies 
between relative changes of independent (dx) and dependent (dy) parameters from 
the point of view of the given investigation - see equations (10.6) and (10.7). This 
model can be written in the following matrix formula: 
                                                   A y B xδ δ=   ,          (10.36) 

where A and B are coefficient matrices of external and internal parameters of the 
investigated system. 
 In case of system shown by Figure 10.1 the coefficient matrices are: 

                                   



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
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
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Using the  
                                                         D A B= −1             (10.39) 

diagnostic matrix, the equation 
                                                         δ δy D x=             (10.40) 

can be used for diagnostic investigations that will be shown in the following 
chapters. 
 
10.4. Solutions of Non-Linear Mathematical Models 
 

The non-linear mathematical model set-up in Chapter 10.2. should be solved. 
Because a real technical system is a multiple-unit one its mathematical model is a 
system of equations. In case of non-linear systems of equations few basic methods 
(for instance the chord-method) of solution of non-linear system cannot be used. In 
the technical practice the following methods are basically used to solve a non-
linear system of equations: 
 
 NEWTON-RAPSHON METHOD; 
 GRADIENT METHOD; 
 
10.4.1. The NEWTON-RAPSHON Method 
 
To solve the non-linear system of equations 

                                           
0);;(

0);;(

1

11

=

=

nn

n

xxf

xxf







  ,         (10.41) 

suppose that x11 ; x21 … xn1  are its an approximate solution. In this case : 
                                              );;( 1 nii xxff =∆   .         (10.42) 
Then the Taylor series of  functions should be developed and its more then first-
order terms have to be neglected: 
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  .      (10.43) 

The linear system of equations (10.43) should be solved to vector ∆x by any 
method and using this solution the next approximate solution is going to be: 

                                         

njnjn
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∆+=
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   .        (10.44) 
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If all xi fulfill the following inequality  
                                                          ε<jix ,   ,          (10.45) 

the solution can be accepted, where: 
 
ε - the acceptable deviation. 
 
10.4.2. The Gradient Method 
 

The essence of this method is that changing the value of the given scalar - 
vector function is studied in normal direction of the level surface in the n-
dimensional space determined by the dependent variables of the function. 
 Starting from point 0x  that means the zero-th approximate value belongs to 
level surface ( )0)( xfxf = , you should determine the normal direction that is the 
gradient of the surface at point 0x  . Along this gradient vector, you should 
determine the first approximate value 

1
x and its level surface ( )1)( xfxf = . Then 

you should determine point (and approximate value) 2x  and its surface 
( )2)( xfxf =  and so on … 

 Because 
                                        ( ) ( ) ( ) >>> 210 xfxfxf  …  ,       (10.46) 
you can get a point where the value of function )(xf  is the minimal. This vector is 
the solution of the given equation. 
 
 
 
 
 
 
                                         f(x3) 
 
 
                          -λ0  grad f(x0)                 x 
 
                    f(x1) 
                                                               f(x2) 
                            x1          x2 
                     x0 
                                         x3                     f(x0) 
 
 
 
                       0 

Figure 10.2 The Gradient Method 
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 The gradient, which is the vector that shows the direction and intensity of the 
increasing of the scalar - vector function )(xf , can be determined by equation 
                                                 )()( xfxgradf ∇=   ,        (10.47) 
where: 
 
 ∇  - Hamilton (nabla) operator: 
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
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


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x
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∂
∂

∂
∂
∂
∂


2

1

            (10.48) 

 The gradient method is illustrated by Figure 10.2 and its iteration equation is 
                                                )(1 iiii xfxx ∇−=+ λ  ,         (10.49) 
where: 
 
 iλ  - multiplier of i-th iteration step 
 i = 1 ; 2 ; … 





 CHAPTER  11 
  

SETTING UP OF MATHEMATICAL 
MODELS (EXAMPLES) 
 

 
 
11.1. Introduction 
 
Demonstrating the possibility of the use of the above-mentioned mathematical 
modeling methods, in this chapter the filling up of mathematical  models will be 
shown in case of pneumatic system of the helicopter Mi-8 and the starter engine 
AI-9V. 
 Filling up of mathematical model of real technical system requires as to know 
exactly the given system, its work and its technical features. In this chapter the 
most minimal technical feature of the investigated systems and equipment will be 
shown because the author only would like to demonstrate the methodology and 
methods of mathematical diagnostic modeling. 
 
11.2. The Pneumatic system of Helicopter Mi-8 
 

The tasks of pneumatic systems of helicopter Mi-8 are to brake the main 
undercarriage wheels and to be compressed air-source in case of field operation. 
This system does not have anti block equipment and it cannot carry out differential 
braking for steering of  helicopter during its taxing. Schematic diagram used in 
flying-technical practice of the system in shown by Figure 11.1. an the Table 11.1. 
shows its main technical data [1]. 
 

Tank pressure:  40 - 50 +4   bar 
Volume of tanks   10 000  cm3 
Maximal control pressure:         11+1   bar 
Maximal brake pressure:        31+3   bar 

 
Table 11.1.  Main Parameters of the System 

 
11.2.1. Brake Control Valve PU-7 
 
If the pilot pulls the brake lever being in the left control stick, it will have a wire 
and a lever moving the rod. It moves down and it has the reducing spring moving 
the piston down (see Figure 11.2) which is so to close the small releasing valve. 
The piston moves down too and it opens the small intake valve. The tank-pressure 
air streams out the space being under the big intake valve. The tank-pressure air 
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pushes down and opens the big intake valve that the compressed air streams into 
the space being under the piston and to the brake application valve UPO 3/2 . The 
pressure in under-piston - B - space increases and the compressed air pushes the 
piston up. The big intake valve will be closed slowly. 
 

 
Figure 11.1.  Pneumatic system of the helicopter Mi-8  

1 - brake control valve PU-7; 2 - brake application valve UPO 3/2; 3 - brake-
cylinders; 4 - automatic pressure controller AD-50; 5 - air compressor AK-50; 6 - 
tanks; 7 - ground connection; 8 - pressure-gage MV-60; 9 - one-way valve; 10;13 - 
air filter; 11 - pressure-gage MVU -100; 12 - sedimenter-filter; 
 
 If the forces acting upon the piston are in equilibrium, the piston will be stopped 
and control pressure (under the piston) will develop. 

The  forces which act upon the piston are the following: 
downwards: 
 - force of the reducing spring     1sF ; 
 - ambient pressure        pH Ap ; 
upwards: 
 - control pressure           pc Ap ; 

 - tank pressure          sa Ap ; 
 - force of spring between small valves   2sF ; 
 

Therefore the equilibrium: 
pHssaspc ApFApFAp +=++ 12     ,                       (11.1) 

and control-pressure (as the output parameter of PU-7): 

p

ssapHs
c A

FApApF
p 21 −−+

=     [Pa]                          (11.2) 
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where: 
Ap -  area of brake control valve piston; 
pa -  tank pressure after braking; 
pc -  control pressure; 
pH -  ambient pressure; 

 
Figure 11.2.  Brake Control Valve PU-7 

A - tank-pressure chamber; B - control-pressure chamber. 
 
11.2.2. The Brake Application Valve UPO 3/2 
 

The control-pressure air pushes down the piston. It closes the bleading valve 
than opens the intake valve. Therefore tank-pressure air streams into the space 
being under the piston and to the brake-cylinders. If the pressure of under-piston 
space increases, the piston will move up and intake valve will be closed (Figure 
11.3). 
 If the forces which act upon the piston are in the equiblirium, the piston will 
stand and the valves will be closed. In this case brake-pressure is developed and the 
system brakes the main undercarriage wheels of the helicopter. 

The  forces which act upon the piston are the following: 
downwards: 
 - control pressure     1Apc ; 
upwards: 
 - brake pressure     3Apb ; 
 - ambient pressure     2ApH ; 
 - force of the spring     3sF . 
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3321 ApFApAp bsHc ++=                                     (11.3) 

Then the brake pressure: 

3

321

A
FApApp sHc

b
−−

=      [Pa]                                (11.4) 

where: 
An -  area of n-th piston of brake application valve; 
pb -  pressure of brake-air; 

 
Figure 11.3.  The Brake Application Valve UPO 3/2 

A - control-pressure chamber; B - ambient-pressure chamber; C - tank-pressure 
chamber. 
 
11.2.3. The Brake Assembles 
 

They have two brake-blocks and two cylinders. Their brake clearance can be 
adjusted. 

The brake force depends on the followings: 
- friction coefficient             jµ ; 

- prestressing force of the restoring spring       rjF ; 

F x srj j= 0                                             (11.5) 

- brake-shoe clearance            jz ; 
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- stiffness of the restoring spring          js ; 

 - difference between the brake and ambient  pressures  Hb pp − ; 
{ - "piston - brake-shoe" transmission        pji }; 

{ - "restoring spring - brake-shoe" transmission       sji }. 
 

 
Figure 11.4.  The Brake Assemble 

 

jj
isj

pj
jj

isj

pj
pjcHbj sx

i
sz

i
iAppF µ














−










−−= 0

2

)(              (11.6) 

that is: 
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where: 
Ac  -   area of brake-cylinder; 
x0  - prestressing distance; 
 
11.2.4. The Tanks 
 

The helicopter Mi-8 has two compressed-air tanks. Their task is the compressed 
air conservation. Both of them have 5000 cm3 volume. They are in the stiffening 
beam of the main undercarriages. 
 During the braking compressed air is led up to 
 
 - control-pressure sub-system  
(PU-7, UPO 3/2 equipment and connecting tube)   )( Hccp ppV −  
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 - brake-pressure sub-system; 

(UPO 3/2, brake cilinders and connecting tube)  )
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 Supposing adiabatic expansion the tank pressure after braking is: 




















−








++−

−=
∑
=

t

Hb
j

bjjpjplHccp

ta V

ppAziVppV
pp

)

4

1
()(

 

1

)

4

1
()(

1

−

=




















−








++−

−
∑

κ

tt

Hb
j

bjjpjplHccp

pV

ppAziVppV
    [Pa] 

(11.8) 
where: 
pt -  tank pressure before braking; 
Vcp -  volume of the control-pressure sub-system; 
Vpl -  volume of the pipe-line; 
Vt -  volume of the tank; 
 
11.2.5. Linearization 
 

After their logarithmic linearization: 
 
the equation (11.2) became 

Hassc pKpKFKFKp δδδδδ 432211 +−−=     ;                     (11.9) 
the equation (11.4) became 

Hscb pKFKpKp δδδδ 7365 −−=     ;                             (11.10) 
the equation (11.7) became 

jjHbj sKzKpKpKF δδδδδ 111098 −−−=    ;                      (11.11) 
the equation (11.8) became 

∑
=

++−−=
4

1
1615141312

j
jHbcta zKpKpKpKpKp δδδδδδ     .          (11.12) 

 For the following diagnostic investigations, independent parameters are the 
input ones of the units of the system. The dependent parameters ( yδ ) and 

independent ones ( xδ ) should be separated into the following vectors: 
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[ ]abc

T pFFFFppy δδδδδδδδ 4321=                 (11.13) 

[ ]tsHss
T pszszszszFpFFx δδδδδδδδδδδδδδ 44332211321=

 
(11.14) 
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Table 11.2.  The Elements of the Coefficient Matrices 
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 The coefficient matrices of the dependent and independent parameters are 
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 The elements of the coefficient matrices - multipliers of the equations (11.9) - 
(11.12)- are determined by the Table 11.2. 
 
11.3. The Starter Engine AI-9V 
 

The tasks of starter engine Ai-9V are to assure compressed air to starter-turbines 
of main engines of the helicopter to start them („air-topping” regime) and to supply 
the direct current electrical system of the helicopter as an emergency power source 
(„generator” regime). The Figures 11.5. and 11.6. show the characteristics of the 
compressor and turbine of the engine, which will be necessary for mathematical 
modeling. 
 For exact and accurate determination of momentary regime of this engine four 
parameter have to be known. Therefore its mathematical model have to be a system 
of equation that was four equation. They are equations which depict - in case of the 
air-topping regime: 
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 the equality of mass flow 
between compressor and turbine: 

01 =−+−
••••

Tflk mmmm    ,                             (11.17) 
where: 

km
•

 - mass flow of the compressor; 

1

•

m  - mass flow to main engines; 

flm
•

 - fuel mass flow; 

Tm
•

 - mass flow of the turbine. 
 
between turbine and exhaust nozzle: 

0=−
••

enT mm     ,                                          (11.18) 
where: 

enm
•

 - mass flow of the exhaust nozzle. 
 
 the equality of the powers 
 
between compressor and turbine: 

0=−− akmt PPPη     ,                                       (11.19) 
where: 

tP   - power of the turbine 

mη  - mechanical efficiency of the rotor; 

kP  - required power of the compressor; 

aP  - power of the auxiliary equipment. 
 
 control law: 

.constn =     ,                                         (11.20) 
where: 
n   - momentary number of revaluation; 
 
 The equations (11.17) - (11.19) form the thermodynamic mathematical model of 
starter engine AI-9V in case of air-topping regime. To solve them, their inner 
relations should be discovered. Since inner relations mentioned above the 
mathematical model will be a non-linear one. 
 In the following, the inner relations of the thermodynamic model will be shown 
shortly and basically. 
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11.3.1. The Ambient Parameters 
 

The ambient parameters should be determined on the basis of International 
Standard Atmosphere [24]: 
 
 ambient (inlet) temperature: 

HHT 0065,0288)(1 −=    [K] ;                   (11.21) 
where: 
H - flight level [m] 
 
 ambient (inlet) pressure: 

256,5

1 44300
1101325)( 






 −=

HHp   [Pa] ;                (11.22) 

 
11.3.2. The Compressor 
 
 Temperature after compressor: 
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k 1

12 1    [K] ;                           (11.23) 

where: 
κ   - adiabatic exponent  [–]; 

kπ  - pressure-ratio of the compressor  [–]; 

kη  - isentropic efficiency of the compressor  [–]. 
 

The latter two parameters should be determined by characteristic of the 
compressor shown by Figure 11.5. 
 
 mass flow of the compressor: 

kk
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+
=

−•

 [kgs-1] ;              (11.24) 

where: 
kA   - area of inlet scoop  [m2]; 

bcss   - coefficient of pressure loss of inlet scoop [–]; 
R    - specific gas constant [kJ(kgK)-1]; 

kq )(λ  - non-dimensional mass flow rate of the compressor  [–]. 
 
 power of the compressor: 

kplk mTTcP
•

−= )( 12    [kW] ;                           (11.26) 
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where: 

plc  - mass specific heat at constant pressure of air  [kJ(kgK)-1]. 

 

                          
Figure 11.5.  Characteristic of the Compressor 
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 pressure after compressor: 

12 pp bcsksp=     [Pa]  .                       (11.27) 
 
11.3.3 The Combustion Chamber 
 

The gas temperature after combustion chamber can be determined using method 
and equation developed by Professor SÁNTA [28, 29]: 

ac
acbibjbj

T
2

42

3

−+−
=    [K] ;                   (11.28) 

where: 
tqbj 823,107626,1 +=  

bkqbi t −−−= 206,168972,71  

tqac 45 10568,61005714,4 −− ⋅+⋅=  

)1( tptet qcqbk ++=η  
2

22 151786,1912577,0107,18 TTc p ++=  

tq   - fuel - air mass flow ration  [–]; 

etη  - efficiency of the combustion chamber  [–]. 
 
 pressure after combustion chamber 

etpp σ23 =    [Pa] .                                 (11.29) 
 
11.3.4. The Turbine 
 
 Temperature after the turbine: 
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where: 
Tη  - isentropic efficiency of the turbine  [–]; 

Tπ  - pressure ratio of the turbine  [–]. 
 

The efficiency of the turbine should be determined by characteristics of the 
turbine - see Figure 11.6. 
 
 mass flow of the turbine: 
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  [kgs-1]    (11.31) 
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where: 
TA   - minimal area of row of the blades of the turbine  [m2]; 

Tq )(λ  - non-dimensional mass flow rate of the turbine  [–]. 
 

The non-dimensional mass flow rate of the turbine can be determined on the 
basis of the characteristic of the turbine, which can be seen in Figure 11.6. 
 
 power of the turbine: 

)( 43 TTcmP pgTt −=
•

  [W] ,                     (11.32) 
where: 

pgc  - mass specific heat at constant pressure of the gas  [kJ(kgK)-1]. 
 

 
Figure 11.6.  Characteristic of the Turbine 

 
 pressure after the turbine: 

T

pp
p

3
4 =   [Pa] .                                  (11.33) 
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11.3.5. The Exhaust Nozzle 
 
 The pressure ratio of the exhaust nozzle: 
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en =p   [–]                                      (11.34) 

 non-dimensional velocity of exhaust nozzle at the exit: 
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 non-dimensional mass flow rate of the exhaust nozzle: 
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 mass flow of the exhaust nozzle: 
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 CHAPTER  12 
  

APPLICATION OF THE MODELS FOR 
DIAGNOSTIC INVESTIGATION 
 

 
 
12.1 Introduction 
 

In this chapter the diagnostic investigations which are based on mathematical 
modeling will be shown. This chapter will show their methodology and then 
illustrate their possibilities of use by the examples of pneumatic brake-system of 
the helicopter Mi - 8 Hip and starter engine AI - 9V. 
 
12.2 The Sensitivity Test 
 
12.2.1 Methodology 
 

The essence of the sensitivity test is that the failure or operational wear-out of 
the given functional unit is simulated by changing of its independent variables 
(only in the diagnostic model and not in the real system!) [29]. On the basis the 
linear or non-linear mathematical model of the investigated system, it can be 
determined how sensitive the dependent system variables will be to the simulated 
changes. 
 If only one of the independent variables is changed, the investigation will be 
called an one-parameter sensitivity test. If the number of the changed independent 
variables is more than one, the several-parameter sensitivity test is used. 
 It is important to mention that the changes of independent variables cannot be 
more than about 1 or 2 % depending on the intensity of the original model's non-
linearity. These models are basically  either linearized one or the non-linear one 
which need to be solved by any numerical methods, which usually bases on 
linearization. Therefore, depending on the non-linearity of the original model, the 
results of the sensitivity test can have difference from real influences of the 
simulated changes. But the result shows the direction and order of magnitude of the 
real influences with enough accuracy 
 The results of sensitivity test can be used for the conclusions to come about the 
technical features of the given system and its behavior in case of simulated failures 
without that you put out of order the real system during the planning or 
modification of the system. 
 This method can be used for troubleshooting too. In case of malfunction of the 
system for localization of the trouble, we can test the fault supposed logically by 
us. 
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12.2.2 Case of Pneumatic System of Helicopter Mi - 8 
 

In this case we use the linear mathematical diagnostic model of the pneumatic 
brake-system of the helicopter Mi - 8 - see equations (11.13) …(11.16) [12;21].For 
the one-parameter sensitivity test the following independent parameters were 
changed: 
 
 tank pressure prior to braking -  pt; 
 force of the reducing spring of the PU-7 -  Fs1; 
 stiffness of restoring spring of the 2nd brake-shoe -   s2; 
 clearance of the 2nd brake-shoe -   z2. 
 

pc pb F1 F2 F3 F4 pa 
∆pt = -1%               (0,5 bar) 

3,492e-1 3,764e-1 3,960e-1 3,960e-1 3,960e-1 3,960e-1 -1,022 
∆Fr1 = -1%                (6,1 N) 

1,273 -1,373 -1,444 -1,444 -1,444 -1,444 2,279e-2 
∆s2 = -1%       (4,53 Nmm-1) 

0 0 0 1,79e-2 0 0 0 
∆z2 = -1%                 (4 µm) 

1,416e-5 1,527e-5 1,606e-5 1,285e-3 1,606e-5 1,606e-5 -4,147e-5 
∆z2 = -1% and ∆s2 = -1% 

1,416e-5 1,527e-5 1,606e-5 1,9205e-2 1,606e-5 1,606e-5 -4,147e-5 
 

Table 12.1.  Results of Sensitivity Test 
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Figure 12.1  Sensitivity of the System (∆pt = -1%) 
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     [%] 
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Figure 12.2.   Sensitivity of the System (∆Fr1 = -1%) 
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Figure 12.3.   Sensitivity of the System (∆s2 = -1%) 
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Figure 12.4.   Sensitivity of the System (∆z2 = -1%) 
 
 For two-parameter sensitivity-test of the system, as an example, the 1 % 
decreasing of the stiffness of restoring spring and clearance of the 2nd brake-shoe 
has been simulated. Its result can be seen in the figure 12.5. 
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         [%] 
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Figure 12.5.   Two-Parameter Sensitivity of the System (∆z2 = -1% and ∆s2 = -1%) 
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Figure 12.6  Sensitivity of the System Depending on the Tank Pressure Prior to 
Braking (∆zj = -1%) 
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Figure 12.7.  Sensitivity of the System Depending on the Tank Pressure Prior to 
Braking (∆sj = -1%) 

 
 The sensitivity test can be used in different match-points of the system. Then 
the elements of the coefficient matrices have to be determined for all match-points. 
For demonstration, the sensitivity-test have been performed in cases of different 
tank-pressure prior to braking pt . You can see the influences of the 1 % decreases 
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of clearance of the   j-th brake-shoe zj (figure 12.6) and its stiffness of the restoring 
spring (figure 12.7) depending on the tank pressure prior to braking pt . Figure 12.8 
and 12.9 show the change of brake force of the j-th brake-shoe in cases of decrease 
of its clearance and of stiffness of its restoring spring depending on the brake 
pressure pb . 
 
   ∆Fj   [%] 
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[bar] 

Figure 12.8. Sensitivity of the System Depending on the Brake Pressure (∆zj = -
1%) 
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Figure 12.9. Sensitivity of the System Depending on the Brake Pressure (∆sj = -
1%) 

 
 On the basis of this test you can state it that: 
 
 the examined system is very insensitive to the anomalies of the operational 

parameters; 
 the sensitivity of the system decreases if the brake pressure is increased to its 

nominal maximum value. 
 
 These can be considered beneficial with respect to the operation since great 
deviations in the internal parameters are admissible in the course of operation. For 
example, longer period between the checkings, repairs and overhauls of 
maintenance can be determined. 



APPLICATION OF THE MODELS FOR DIAGNOSTIC INVESTIGATION 

 
 

112 

 
12.2.2 Case of the Starter Engine AI - 9V 
 

For one-parameter sensitivity test of starter engine AI - 9 V, its non-linear 
stationary thermodynamical model - see equations (11.17) … (11.20) - is used. The 
following independent parameters are changed: 
 
 isentropic efficiency of the turbine -  ηt ; 
 isentropic efficiency of the compressor -  ηk ; 
 mechanical efficiency -  ηm ; 
 area of inner scoop - Ak ; 
 stagnation pressure recovery coefficient of the combustion chamber -  set ; 
 stagnation pressure recovery coefficient of the inner duct -  s bcs ; 
 efficiency of combustion chamber -  ηet; 
 

The result of the above investigation can be seen in the Table 12.2 and in the 
Figures 12.10 - 12.16. 
 
πk T2 p2 m1 T3 p3 qt mt πt T4 p4 

δηt = -1 % 
0,28  0,28 -0,41 1,37 0,28 2,45 2,02 0,2 1,63 0,09 

δηk = -1 % 
0,03  0,03 -0,05 0,17 0,03 0,26 0,21 0,03 0,2 0,01 

δηm = -1 % 
0,23  0,23 -2,59 1,12 0,23 1,99 1,65 0,18 1,12 0,05 

δAk = -1 % 
-0,50 -0,23 -0,50 -0,36 -0,26 -0,50 -0,42 -0,78 -0,40 -0,20 -0,10 

δset = -1 % 
0,57 0,23 0,57 -0,88 0,77 -0,5 1,28 0,39 -0,4 0,82 -0,1 

δsbcs = -1 % 
0,09  -0,92 1,13 0,43 -0,92 0,74 -0,41 -0,74 0,51 -0,18 

δηet = -1 % 
      1,01 1,1    
 

Table 12.2.  Results of Sensitivity Test 
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Figure 12.10.  Sensitivity of the Starter Engine δηt = -1 % 
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Figure 12.11.  Sensitivity of the Starter Engine δηk = -1 % 
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Figure 12.12.  Sensitivity of the Starter Engine δηm = -1 % 
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Figure 12.13.  Sensitivity of the Starter Engine δAk = -1 % 
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Figure 12.14.  Sensitivity of the Starter Engine δset = -1 % 
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Figure 12.15.  Sensitivity of the Starter Engine δs bcs = -1 % 
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Figure 12.16.  Sensitivity of the Starter Engine δηet = -1 % 
 
 The conclusions of the above investigation are the followings:: 
 
 the mass flow rate to main engines m1 decreases in all simulated cases; 
 the absolute temperature after T2 the compressor  changes the most 

minimally; 
 the parameters of the inlet scoop ( Abcs , s bcs) have the most minimal 

influences an the cycle of the engine that is  on the investigated parameters; 
 the efficiency of the combustion chamber ηet has only the fuel mass 

parameters (qt and mt ) increased; 
 the mechanical efficiency ηm has the most influences on the above-

investigated external parameters. 
 
12.2.4. Determination of Diagnostic Matrix 
 

There is an other method to determine the diagnostic matrix of examined system 
that is based on usage of its non-linear mathematical model. 
 If the original non-linear mathematical model has very sophisticated inlet 
relationships and so functions (for example in case of gas-turbine engines), the 
linearization by any method is very difficult and complicated. In this case the 
following method should be used. 
 The investigated external and internal parameters should be chosen and 
arranged into vectors x  and y . The non-linear model should be excited by the 1 
% perturbations of the above-chosen external parameters one by one. 
 Knowing the result of base and "perturbed" models, the relative changes of 
chosen internal parameters should be determined by the equation 

base

basepert

η
ηη

δη
−

= .    ,                                        (12.1) 

where: 
 

.pertη   - "perturbed" value of general parameter η ; 

baseη   - base value of general parameter η . 
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 These relative changes should be arranged into the diagnostic matrix D  
depending on the above-determined vectors x  and y . 
 To demonstrate the possibility of to use of this method, it was used in case of 
non-linear mathematical model of starter-engine AI - 9V by a very simple example. 
For investigation, the following external 
 
 pressure ratio of compressor -  πk ; 
 increase of temperature in the compressor -  ∆Tk ; 

 fuel mass flow ratio - 
•

tm  ; 
 absolute temperature after the turbine -  T4; 

 mass flow ratio to main engines - 
•

1m , 





 ∆=

••

14 mTmTy tkk
T π      ,                       (12.2) 

and internal parameters were chosen: 
 
 stagnation pressure recovery coefficient of the inner duct -  sbcs ; 
 isentropic efficiency of compressor -  ηk ; 
 isentropic efficiency of turbine -  ηt ; 
 stagnation pressure recovery coefficient of the combustion chamber set ; 
 mechanical efficiency ηm  , 

[ ]mettkbcs
Tx ηsηηs=     .                          (12.3) 

The diagnostic matrix determined by the above-mentioned method is: 
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0412,59589,63752,43310,04395,0
3229,00447,03101,04765,04468,2
5961,30904,58423,24662,07739,0
1615,00224,01551,07539,02234,1
0352,10366,03510,00024,05675,1

D    .      (12.4) 

 
12.3 The Correlation-family test 
 
12.3.1 Introduction 
 

The correlation-family test of measurable external parameters of the examined 
system is one of the diagnostic methods based upon a statistical method. 
 Its goal is to establish the correlation of external parameters between themselves 
in case of anomalies or changes of internal ones [17]. The correlation coefficient 
characterizes the strength of stochastic interdependencies of the random variables 
[3]. Using the result of the analysis, which is the so called correlation-graph, sets of 
external parameters can be determined in which the parameters have got strong 
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correlation between themselves. One of the members of a family can be chosen for 
the measuring that the momentary technical state of the system can be determined 
in the easier way with adequate safety. 
 If one of the two parameters that have got strong positive correlation, changes 
in some direction, another one will change in the same direction most probably 
according to the correlation coefficient. (If correlation is strong by negative the 
changes have opposite directions.) In this case it is sufficient to measure one of 
them. 
 The correlation-family test investigates the stochastic interdependencies 
between the external parameters of the examined system. Using this method you 
can choose those parameters which should be measured for the optimal 
determination of technical state of the system. 
 Relation between phenomena is termed stochastic, if the course of one of them 
influences another, but not unambiguously [23]. The strength of stochastic relation 
of two random variables can be characterized by their correlation coefficient. The  
correlation coefficient of random variables with finite positive variance can be 
written in the 

)()(
))]())(([(),(

µη
µµηηµη

DD
MMMR −−

=                            (12.5) 

form [7], where: 
 
M  - mean; 
D  - variance. 
 
 If η and µ have no interdependence, then 

0),( =µηR     .                                        (12.6) 
 If 

0),( >µηR    ,                                         (12.7) 
η and µ have positive correlation, and for example we can deduce generally the 
inequation 

)(µµ M>                                               (12.8) 
from the inequation 

)(ηη M>    ,                                           (12.9) 
and inversely, This means that the values of either parameter are bigger than their 
means. In case of negative correlation that is 

0),( <µηR    ,                                       (12.10) 
if inequation (12.9) exists, we can suppose that inequation 

)(µµ M<                                              (12.11) 
exists too. Then deviations of either random variable from their means have got 
opposite signs. 
 It is important to note that the value of the correlation coefficient is always 
between  -1 and +1 that is 

− ≤ ≤1 1R( , )η µ    .                                     (12.12) 
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 The correlation coefficient R( , )η µ  can be estimated statistically by equation 
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using the samples x1; x2; … xn  and  y1; y2; … ;yn  which belong to variables η and µ 
[7]. 
 This is termed the experimental correlation of the samples x1 ; x2 ;  …  xn  and     
y1 ;  y2  ;  … ; yn  too. 
 In case of several random variables the correlation coefficients rij determined by 
equation (12.13) can be arranged into the correlation-matrix 
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 The correlation-matrix is always symmetrical and the elements of its main 
diagonal is always equal to 1 that is: 

1=iir  
and                          (12.15) 

jiij rr =  . 
 
12.3.2 Methodology 
 

For the usage of correlation-family test we have to have enough data for 
statistical analysis. These data can be got by using the examined system or its 
model. In practical aspect, it is most suitable to use the linear or non-linear 
mathematical model of the system. 
 The first step is the determination of distribution of real values of non-
measurable internal parameters. For this, we can use the data got during filling up 
the model or analysis of features of the system operation. 
 On the basis of distributions and statistical characteristics of the internal 
parameters the model can be generated. Using these results and equation (12.13) 
and (12.14), the correlation coefficients should be determined and arranged into the 
correlation-matrix. 
 The coefficient which has the most absolute value should be chosen and its 
parameters should be represented as the angular points of a graph. The correlation 
coefficient should be written at this edge. 
 The coefficient with the most absolute value of the rows and columns of the last 
two parameters should be chosen so that the ones which had been represented into 
the graph. have to be left out. This parameter and coefficient should be represented 
into the graph. 
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 A B C D E 
A  -0,40 0,95 -0,80 -0,20 
B -0,40  0,60 0,15 0,70 
C 0,95 0,60  -0,30 0,45 
D -0,80 0,15 -0,30  0,51 
E -0,20 0,70 0,45 0,51  
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Figure 12.17. Creation of Correlation Graph 
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 The correlation families should be separated so that the correlation coefficients 
of the graph in each families have to be more than the determined limit. One of the 
members of each families, chosen by the above-mentioned way, should be chosen 
that can be measured the most suitably. For the choice, you have to consider that 
the chosen parameter has to have strong correlation with another members of the 
family, it needs to be measured easily. Then it is a very important question that 
how many information given parameter has about momentary technical sate of the 
investigated system. Analyzing the result of sensitivity test, it can be determined 
(for example Chapter 12.3.4). For the choice of the most suitable measured 
parameter, other (not mathematical modeling) questions have to be taken into 
consideration depending on the system's tasks, works and construction. 
 One of the main questions of the correlation-family test is the determination of 
the limit for separation of families. If you use higher limit, you will get more 
families. In this case you can get more information about momentary technical 
state of the system, but more families mean more measured parameters. They 
require more technical and financial investment. If the used limit is lower, the 
number of families will decrease. In this case, technical investment will decrease, 
but the information which can be got about the system will or can decrease. 
Therefore determination of this limit requires careful consideration. You have to 
consider the feature of the examined system, the technical and financial 
possibilities and the needed accuracy of the technical state determination. It is 
important point of view that the consequence of troubles or the faulty work of the 
system (catastrophe or disturbance). It is generally suitable that the limit should be 
between 0,5-0,8 [12]. 
 The other question of this test is the suitable number of statistical sample 
(excitation of model) for exact determination of correlation coefficients. For 
solution this problem the number of excitation should be grown increasingly until 
differences between the same elements of the matrices are decreased below a 
determined limit [14]. 
 
12.3.3 Case of the Pneumatic System of the Helicopter Mi-8 
 

The correlation-family test of the pneumatic system of the helicopter Mi-8 has 
been carried out, using its linear diagnostic model set-up in the Chapter 11.1 [18]. 
For excitation of the model the following parameters were changed randomly: 
 

Parameter Distribution 
force of the reducing spring of PU-7; uniform 
force of the small spring of PU-7; normal 
force of spring of UPO-3/2; normal 
ambient pressure; uniform 
tank pressure prior to braking; uniform 
clearances of brake-shoes; uniform 
stiffness of restoring springs of brake-shoes. normal 

 
Table 12.3.  The Exciting Parameters 
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 The number of excitations was grown increasingly till differences between the 
same elements of matrices decreases below 0,01. The correlation-matrix of the 
brake-system got by the above-mentioned analysis is: 
                    pc               pb             F1            F2             F3            F4           pa 
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1153,0156,0119,0147,0152,0154,0
1928,0865,0926,0958,0914,0

1812,086,0927,0851,0
1802,0865,0785,0

193,0854,0
1921,0

1

R  

(12.16) 
 The correlation-graph determined on the basis of the above matrix is shown in 
figure 12.18, where the measured parameters are signed by thick curves. 
 
 

      pc                              F2                              F4 
 

0,921                                 0,958 
0,865 

 
pb 

 
0,930 

0,927                                       -0,152 
 
                                  F3                                         F1                           pa 
 
 

 
Figure 12.18.  The Correlation Graph of the Pneumatic System of Helicopter Mi-8 

 
 The conclusions of this investigation are the following ones: 
 
 the output parameters of the system have got strong correlation between 

themselves, except the tank pressure after braking 
  
 measuring on only two parameters is sufficient, these ones are 
 
         -  tank pressure after braking pa ; 
Its measuring is suitable for checking of the compressed air support sub-system 
too. 
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         -  pressure of brake-air pb ; 
Its measuring is suggested because its correlation with the other members of its 
family is strong and because it is a well-measurable parameter. 
 
 gages of the helicopter Mi-8 measure the above-mentioned parameters, 

therefore their choice during the planning has been proven proper. 
 
12.3.4 Case of the Starter Engine AI-9V 
 

For the correlation-family analysis of starter-engine AI - 9V I used nonlinear 
thermodynamic mathematical model of the engine [19]. For excitation of the model 
the following parameters were changed randomly: 
 

Parameter Distribution 
number of revolution normal 
efficiency of the compressor exponential 
efficiency of the turbine exponential 
efficiency of the combustion chamber exponential 
coefficient of pressure loss of the combustion chamber exponential 
coefficient of pressure loss of the inlet scoop exponential 
area of the inlet scoop normal 
mechanical efficiency normal 
flight level uniform 

 
Table 12.4.  The Exciting Parameters 

 
 As you see from figure 12.19, the eleven chosen external parameters can be 
separated into three correlation-families, but two of them are one-member ones. 
 On the basis of correlation-family test, the gas temperature after the turbine T4 
should be measured. It characterizes the thermal load of the engine (mainly of the 
turbine), it has strong correlation with another members of its family, and its 
measuring can be carried out easily. 
 Only the member of another family that is the air pressure after the compressor 
p2 is measured during main duty of the engine. 
 Only on the basis of correlation-family test, measuring of mass flow ratio to 
main engines 

1

•

m  seems suitable. However from the technical point of view, it can 
be measured only by losing so resultant efficiency of the engine should decrease. 
According to another diagnostic investigation it can be established that this 
parameter has minimal information. In cases of each simulated failure of the 
engine, it decreases. Therefore it can be indicated only the fact of failure and aging 
of the engine and it cannot get information about their feature. On the basis of these 
reasons, you should disregard measuring of this parameter. 
 The correlation-matrix got by analysis mentioned above is: 
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            πK         T2        p2        1

•

m       T3        p3       qt        Tm
•

    πT       T4      p4 

R =

− −
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Figure 12.19.  The Correlation Graph of the Engine AI-9V  
 
 The correlation-graph determined on the basis of the matrix above is shown in 
figure 12.19, where the measured parameters are signed by thick curves. 
 The results of the above investigation have justified the decisions of designing 
engineers. 
 
12.4. Investigation of Prohibited Duty 
 

Using mathematical model, the prohibited duties of the examined system can be 
investigated without its break-down or damage. This chapter will show an example 
of this very interesting possibility of use of mathematical models. 
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 The starter-engine AI - 9V has two duties that must not be used at same time. 
They are: 
 
„air-topping” ; 
The compressed air is tapped from after-compressor space to starter-turbines of 
main engine of the helicopter to start them. 
 
„generator” . 
In this case the turbine propels the compressor and the starter-generator of AI - 9V 
to supply the direct current electrical system of the helicopter. 
 
 When the author set up the thermodynamical model of the starter-engine AI-9V, 
I remembered this practical question in that he was interested when he operated 
helicopters MI - 24 D. Therefore, modifying the original mathematical model, the 
author simulated this duty. For modeling that turbine propels the compressor and 
the starter-generator, the following equation was  used: 

0=−−− genakmt PPPPη                                  (12.18) 
instead of equation (11.19). 
 

 Results of Permissible 
Parameter modified original (nominal) 

 model value 
temperature after the compressor         443 K         434 K  
pressure after the compressor 307889 Pa 294344 Pa  
temperature before the turbine       1251 K       1164 K  
pressure before the turbine 289425 Pa 276684 Pa  
temperature after the turbine       1050 K         979 K 1023 K 

(750 oC) 
pressure after the turbine 114020 Pa 112877 Pa  
mass flow rate to main engines 0,403 kg s-1 0,399 kg s-1 0,4 kg s-1 

 
Table 12.5.  Results of Prohibit Duty Modeling 

 
 The results of the modified model (see table 12.5) show the following: 
 
 the temperature before the turbine 3T  has increased by 36 o C; 
 the temperature after the turbine 4T  has increased by 31 o C and it has been 

more than its maximal permissible value. 
 
 On the basis of the above mentioned facts, it can be established that the thermal 
load of the turbine, which is the most structural and material problem of gas-
turbine engines, increased considerably. This increased temperature and thermal 
load can damage the rotor blades of the turbine. Therefore, it can be stated that the 
usage of this investigated operating regulation is justified. 
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 It is important to mention that the above mentioned investigation could be done 
without the damage of turbine rotor blades, and only by using the mathematical 
model of the starter-engine. This possibility of use is one of the most important 
advantages of the mathematical modeling. 





 CHAPTER 13 
  

APPLICATION OF THE MODEL FOR 
IDENTIFICATION OF THE TECHNICAL 
STATE OF THE SYSTEM 
 

 
 
13.1. Introduction 
 

The linear mathematical diagnostic model can be used to estimate the 
momentary technical state of the examined system as well. For this investigation, 
the parameters need to be classified that the vector yδ  includes only the detectable 

- external - parameters, and the vector xδ includes the non-measurable - internal 
ones [13]. 
 On the basis of the above-determined vectors and their coefficient matrices A  
and B  should be determined 

xByA δδ =      .                                       (13.1) 
 Knowing the elements of the coefficient matrices and values of internal 
parameters (elements of vector yδ ) of the equation (13.1), the values of  the 

internal parameters that is the elements of the vector xδ  can be determined. 
 
13.2. Methods of Identification 
 
The vector xδ  can be estimated by two methods. 
 
13.2.1. Case of Quadratic Coefficient Matrix 
 

If the coefficient matrix of the internal parameters is a quadratic one that can be 
inverted, you can use the diagnostic matrix 

BAD 1−=                                                 (13.2) 
and the equation (13.1) can be rearranged to 

xDxBAy δδδ == −1      .                                (13.3) 

In this case you have to find the vector xδ  that satisfies the equation 
0=− xDy δ      .                                         (13.4) 

Therefore the minimum of the equation should be estimated 
xDyxf δ−=)(                                           (13.5) 
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using any numerical searching algorithm. 
 
13.2.2. Case of Non-Quadratic Coefficient Matrix 
 

If the coefficient matrix of the internal parameters A  is not quadratic so it 
cannot be inverted, you have to introduce the auxiliary vector 

yAu δ=      .                                             (13.6) 
Therefore the equation (13.1) can be rearranged to 

xBu δ=      .                                             (13.7) 
Then, the vector xδ  which satisfied the equation should be estimated 

0=− xBu δ                                                 (13.8) 
that is the minimum of the scalar - vector function 

xBuxf δ−=)(                                                (13.9) 

should be estimated. 
 The vector xδ  that satisfies the equation (13.5) or (13.9) can be estimated by 
using any search of optimum method. 
 
13.3. Search of Optimum Methods 
 

In the technical practice the following search of optimum methods are used 
basically: 
 
 GRADIENT METHOD; 
 RANDOM METHOD; 
 GAUSS-SEIDEL METHOD 
 
 The gradient method has been introduced in the Chapter 10.4.2. 
 The disadvantage of this method is that it can run to a local minimum point. 
Therefore the Gradient method should be used by different initial points or with 
any other optimum search method. 
 
13.3.1. The RANDOM Method 
 

The essence of the RANDOM-method is that a domain around the „zero-th 
approximate point” is designed and point in this domain are chosen randomly. The 
function value of these points is determined. The point that has the most minimal 
function value should be chosen and a less domain around it should be designed. 
The above-mentioned procedure should be repeated until the function value 
decreases below the determined limit. 
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Figure 13.1 The two-dimensional RANDOM Method 

 
13.3.2. GAUSS-SEIDEL Method 
 

The GAUSS-SEIDEL method is one of the most known relaxation ones to solve 
the  

0=− rzC                                             (13.10) 
type linear system of equation. Its principle is the minimum points along the axes 
of the state space are searched successively. 
 Using this method, the elements of vector z should be modified one by one in 
order to let the actual element of vector dk in equation: 

kdrzC =−                                          (13.11) 
equal to zero. 
 In this case the following iteration equations should be used: 

kkk vzz +=+1                                        (13.12) 

[ ]0000  k
T
k vv =                              (13.13) 

kk

k
k c

dv −=                                                (13.14) 
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13.4. The Case of the Pneumatic System of the Helicopter Mi-8 
 

In case of the pneumatic system of the helicopter Mi-8 the vectors δ x  and δ y  

were separated so that the vector of external parameters includes ones that are 
measurable even now. I applied this method, because it has to be used for a 
helicopter that has not been designed for the on-condition maintenance. 

[ ]tabH
T pzzzzpppy δδδδδδδδδ 4321=     ,       (13.15 

[ ]44332211321 FsFsFsFsFFFpx sssc
T δδδδδδδδδδδδδ =  

 (13.16) 

 Knowing the external and internal parameters their coefficient matrices have 
been determined. 
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(13.18) 

 Since coefficient matrix of the internal parameters was not quadratic one, the 
equation (13.9) and the gradient method were used. The result of the investigation 
can be seen in the following tables and figures. 
 Working time of the helicopter chosen for investigation was 52 hours 06 
minutes (649.10 - 701.16) from 19th June to 20th November. The following figures 
show the test results depending on operating hours and depending on calendar 
time. 
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 Date:     09.19. 
 Tail Number:  XXX 
 Flying Hours:  673 . 02 
 Ambient pressure:     [torr]  753,5 
 Right Break-Shoes' Clearance: [mm]  0,3 0,4 
 Left Break-Shoes' Clearance: [mm]  0,4 0,45 
 Pressures      [atm] 
 Prior to Breaking   47,5  45   43,5  42 
 After Breaking    45   43,5  42   40 
 Break       33,5  32   32,5  34 
 

Table 13.1. Measured Data 
 

Estimated Differences  [‰] 
1    pc -60,2181600 
2    Fs1 1,6574380 
3    Fs2 -15,6758500 
4    Fs3 -15,6471700 
5    s1 -16,0464700 
6    F1 -11,8686600 
7    s2 0,0868354 
8    F2 -14,9381200 
9    s3 -0,1951021 

10    F3 -14,4642500 
11    s4 -0,2006741 
12    F4 -14,7801600 

Break effort 0,4324500  
Break Asymmetry 0,1037500 

 
Table 13.2  Result of State/Estimation 
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Figure 13.2.  Decrease of the Brake-Effort Depending on Operating Hours 
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Figure 13.3.  Decrease of the Brake-Effort Depending on Calendar Time 
(of the Investigating Year) 
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Figure 13.4.  Brake-Asymmetry Depending on Operating Hours 
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Figure 13.5.  Brake-Asymmetry Depending on Calendar Time 
(of the Investigating Year) 

 



 CHAPTER  14 
  

APPLICATION OF THE MODEL FOR 
MANAGEMENT OF THE OPERATIONAL 
PROCESS 
 

 
 
14.1. Introduction 
 

Let general parameter η characterize the technical state of the investigated 
system (see Figure 14.1). If the value of parameter η meets the ηbr brake value, the 
system will break-down. Let τ be the parameter which characterizes the 
performance of the system. For example, this parameter can be the effective 
calendar time, effective flying hours (in case of the airframe), number of landings 
(in case of landing gear systems), or number of starts (in case of gas-turbine 
engines) from installation or the last overhaul. 
 

 
Figure 14.1 The Wearing-out Process 

 
 In this case the wearing-out process of the system, that is the η(τ) stochastic 
function can be characterized by: 
 
( )τη   - the expected value function of the parameter η ; 

( )f η τ,  - the density function of parameter η . 
 
 Then the probability of good working state of the system: 

                               ( ) ( )( ) ( )∫
∞−

=>=
br

dfPgwP br

η

ττητηητ ,   .    (14.1) 
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 The process of changing of parameter η can be described by: 
 

( )τη


  - the changing velocity of the parameter η ; 







 τηϕ ,


 - the density function of the changing velocity. 

 
Then the "failure changing velocity" of parameter η is: 

                         ( ) ( )
τ
τηηττη

∆
−

=∆ br
br ,


   if   ( )τηη >br       (14.2) 

and the probability of good working state of the system in the interval (η , η+∆η): 

                    ( ) ( ) ( ) ∫
∞−







=






 >=∆

br

dPgwP br



 η

ητηϕτητηττ ,,      (14.3) 

supposing that the system is ready to service at the start of the investigated 
performance interval. 
 
14.2. Operational Management Method 
 

For exact and manageable comparison of different technical states and 
management of the operational process, the so called "leader parameter" should be 
introduced. The leader parameter can be the most important one for the operation 
and the maintenance of the system. This should be one of parameters estimated 
above (see Chapter 13) or a parameter which can be determined directly from 
internal ones. For example, the leader parameter can be the thrust or useful power 
in case of gas-turbine engines. 
 Depending on the momentary values of the leader parameter and its velocity, 
the needed service work can be decided. For decision, permissible value and 
permissible velocity of the leader parameter should be determined on the basis of 
its breakdown value and permissible probability of risk. 

Knowing the breakdown value ηbr of the parameter η and performance interval 
between checks ∆τ, the permissible value ηp and the permissible changing velocity 
to ready for working should be determined. Supposing that: 
 the change of the parameter η on interval ∆τ (see Figure 14.2) is a linear 

one;  
 the density function of the changing velocity is independent on working 

performance of the system.  
 
14.2.1. Determination of Permissible Velocity 
 

If the value of the parameter η reaches the permissible value ηp at  the  i-th 
checking and it changes with  

τ
ηη

∆
∆

>


 



APPLICATION OF THE MODEL FOR MANAGEMENT OF THE OPERATIONAL PROCESS 

 

135 

 

velocity, the parameter η is going to reach the breakdown value ηbr before the next 
(i+1-th) check, in other words the operated system will break-down. 

 
Figure 14.2. Determination of the Permissible Parameter Values  

 
 Therefore, permissible velocity of the parameter η to ready for working is:  

                                                         
τ
ηη

∆
∆

=


p   .         (14.4) 

The probability of breakdown is:  

           ∫
∞−

−=





 ≤−=






 >=∆∆



 br

dPPP brbrbr

η

ηηϕηηηηητ )(11),(    (14.5) 

 Knowing the permissible probability of risk Q (permissible probability of 
breakdown), it is substituted into equation (14.5), equation  

                                  Q P dbr

p

= = −
−∞
∫( , ) ( )∆ ∆τ η ϕ η η
η

1
 



        (14.6) 

is got. 
 
14.2.2. Determination of Permissible Value 
 

 If the density function of velocity η


 cannot be determined by statistical 
method, the usage of one of the well-known density functions is suitable. For 
example:  
 
-     UNIFORM distribution:  

                    




ηηη
ηϕ

∆
=

−
=

11)(
minmax

      (if minmax



ηηη >> )    (14.7) 

Then 

                            Q d p
p

= − = − = −
−∞
∫1 1 1 1
∆ ∆

∆

∆ ∆η
η

η

η

η

τ η

η






 



  ,    (14.8) 

that is 
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                                                    ∆ ∆ ∆η τ η= −( )1 Q


  .      (14.9) 
 
-     EXPONENTIAL distribution:  

                                             ϕ η λ λη( )


= −e   (if η


 > 0)  .      (14.10) 
Then 

                                                       Q e p= − −1 λ η


  ,        (14.11) 
and 

                                                   ∆ ∆η
λ

τ= −
−λn( )1 Q

  .       (14.12) 

 
-     NORMAL (GAUSS) distribution:  

                                                 ϕ η
σ π

η
σ( )

( )




=
−

−1
2

2

22e
m

  .       (14.13) 

 In this case simpler solution cannot be got like to above ones which is deduced 
easily by any algebraic way. Therefore, on the basis of its variance and expected 
value, transforming the normal distribution to the standard normal one, the 
permissible velocity of parameter η and parameter interval ∆η can be determined.  
 The permissible value of the parameter η to ready for working:  
                                                     η η ηp br= − ∆   .         (14.14) 

 If momentary values η and η


 smaller than those permissible ones determined 
by equation (14.14) and (@6.4), the system will not break down till the next check 
with probability of least 1-Q. 
 
14.3. Case of Pneumatic System of Helicopter Mi-8 
 

Using result of the state-estimation of pneumatic break-system of helicopter   
Mi-8 depicted in Chapter 13, the operation management method and process will 
be shown. 
 The decrease of the brake-effort and brake asymmetry were chosen as leader 
parameters. To determine the permissible value and the velocity of this leader 
parameters, 

Q = 0,025  
the permissible probability of risk was used. 
 The quantity of data is not sufficient for statistical estimation of their 
distribution. Therefore, for determination of the permissible value and velocity of 
the resultant brake-effort, the density of its changing velocity is supposed as an 
uniform one - see equations (14.7); (14.8) and (14.9).  
 Flying hours of the helicopter chosen for investigation was 52 hours 06 minutes 
(649.10 - 701.16) from 19th June to 20th November. The following figures show the 
test results depending on the flying hours and depending on the calendar time. 
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 Table 14.1. shows the estimated values and permissible values of leader 
parameters and their changing velocities. The following figure shows the changing 
velocities of leader parameters depending on flying hours and calendar times. Their 
momentary values are shown in Chapter 13. ( see Figures 13.2.  - 13.5.). 
 

Number of Check I. II. III. IV. V. 
Data 06. 19. 09. 19. 10. 02. 10. 30. 11. 20. 

Flying Hours 649. 10 673. 02 683. 10 694. 39 701. 06 
∆tc  [day] −−−−− 77 28 28 21 

∆tw  [f.hours] −−−−− 23,87 10,13 09,48 06,62 

Break effort[‰] 0,65655 0,43245 0,13550 0,25030 0,38770 

Permissible Value [‰]   91,5   

Dep. on Cal.Time [day-1] −−−−− -2,91 10-6 -1,06 10-5 4,10 10-6 6,54 10-6 
Perm. Value [day-1]   8,10 10-5   

Dep. on F. Hours. [f.h.-1] −−−−− -9,42 10-6 -2,93 10-5 1,21  10-5 2,08 10-5 
Perm. Value [f.h.-1]   4,35 10-5   

Break Asym.     [‰] 0,20645 0,10375 0,10390 0,10345 0,00000 

Perm. Value[‰]   25   

Dep. on Cal.Time [day-1] −−−−− -1,33 10-6 5,36 10-9 -1,61 10-8 -4,93 10-6 
Perm. Value [day-1]   2,95 10-5   

Dep. on F. Hours. [f.h.-1] −−−−− -4,30 10-6 1,48 10-8 -4,75 10-8 -1,56 10-5 
Perm. Value [f.h.-1]   1,90 10-5   

Notice  good good good good 
 

Table 14.1. Result of the Operation Management Method 
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Figure 14.3. Changing Velocity of the Brake-Effort Depending on Flying Hours 
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Figure 14.4. Changing Velocity of the Brake-Effort Depending on Calendar Time 
(of the Investigating Year) 
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Figure 14.5. Changing Velocity of Brake-Asymmetry Depending on Flying Hours 
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 CHAPTER  15 
  

APPLICATION OF MODELS  
TO INVESTIGATE EFFECTS  
OF MANUFACTURING ANOMALIES  
 

 
 
15.1. Introduction 
 

During the design of new aircraft system the determination of manufacturing 
tolerances is a very important task. When the manufacturing tolerances of system 
components are determined, the influences of their probable manufacturing 
anomalies on the external parameters of the system should be investigated. This 
chapter will show the methodology the usage of mathematical diagnostic models to 
investigate influences of manufacturing  anomalies and its inverse method. 
 It is possible that system parameter values are inadequate, but every unit and 
element of the system meet its own requirements. Because of the manufacturing 
tolerances of units or elements have been determined incorrectly. 
 It is possible too, that working requirement of the system determine strictly the 
system parameter tolerances. For example, such system requirements can be 
velocity or acceleration of the piston of hydraulic servo actuator, in the flight 
mechanical point of view. These external parameters should require the tolerances 
of internal parameters of the system strictly. 
 Using linearized mathematical diagnostic model of the given system the 
problems mentioned above can be investigated and solved. 
 Manufacturing  anomalies of internal parameters can be characterized by their 
densities, expected values and variances. These random characteristics determine 
the densities, expected values and variances of external parameters so their 
manufacturing anomalies. 
 For investigation, the following matrices and vectors should be introduced [11]: 
 
 Matrix of nominal values of the internal parameters; 

                                         















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
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nom

nom
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x
x

X




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0
00

2

1

       (15.1) 



APPLICATION TO INVESTIGATE EFFECTS OF MANUFACTURING ANOMALIES 

 

140 

 

 Matrix of nominal values of the external parameters; 

                                      















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


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y
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Y









0

0
00

2

1

       (15.2) 

 
 Vector of measured variances of internal parameters; 
                                            [ ]p

T xxxx ˆˆˆˆ 21 2=         (15.3) 
 
 Vector of measured expected values of internal parameters. 
                                            [ ]p

T xxxx ~~~~
21 2=         (15.4) 

 
15.2. Case of the "Gauss Distributions" 
 

Now suppose that manufacturing anomalies of the internal parameters are 
interdependent random variables with normal distribution. 
 In this case the expected values of internal parameters are the means of their 
tolerance zones. It is important to mention, if the tolerance zones are asymmetric, 
the expected value will not be equal to the nominal value of the given parameters. 
 The variance of this parameters should be determined as a sixth parts of 
tolerance zones due to the so called "3σ-rule". Because the random variables of 
normal distribution with expected value m and variance σ will fall "practically 
certainly" in the (m-3σ, m+3σ) interval - its probability in fact is 0,9973  [23]. 
 
15.2.1. Determination of Variances 
 

To determine the variances of external parameters, the vector of relative 
variances of interval parameters should be determined by equation 

                                                           xXx ˆˆ 1−=δ   .        (15.5) 
Using the diagnostic matrix of the investigated system, the vector of relative 
variances of external parameters is: 

                                                  xDXxDy ˆˆˆ 1−== δδ   .     (15.6) 
Knowing the nominal values of the external parameters, the vector of their 
measured variances should be determined by following equation: 

                                                 xYDXyYy ˆˆˆ 1−== δ   .     (15.7) 
Introduce the "measured diagnostic coefficient matrix": 

                                                      S X DY= −1   ,       (15.8) 
the equation (15.7) can be simplified: 
                                                         xSy ˆˆ δ=   .        (15.9) 
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15.2.2. Determination of Expected Values 
 

To determine expected values of external parameters, the vector of relative 
expected values of integral parameters should be determined. Because the  
diagnostic model describes interdependencies between relative changes of internal 
and external parameters, this vector should show the relative values of difference 
between measured expected and nominal values to nominal ones. Therefore, using 
the p-dimensional summation vector ep (every element of the vector is equal to 1): 

δ~ ~
x x x

x
nom

nom

=
−

  , 

that is                         (15.10) 
δ ~ (~ )x X x X e p= −−1      . 

Knowing the diagnostic matrix, the vector of relative expected values of external 
parameters should be determined by equation 

                                         δ δ~ ~ (~ )y D x X D x X e p= = −−1   .      (15.11) 

Then, using the matrix of nominal values of external parameters and the k-
dimensional summation vector ek , the vector of measured expected values of 
external parameters should be determined: 

                          ~ ~ (~ )y Y y Ye X DY x X e Yek p k= + = − +−δ 1   .     (15.12) 

Applying the measured diagnostic coefficient matrix S - see equation (15.8) - the 
equation  (15.12) can be simplified: 
                                           ~ (~ )y S x X e Yep k= − +   .        (15.13) 
 Knowing the variances and the expected values of external parameters, their 
"manufacturing tolerance zones" that are result of manufacturing anomalies of units 
and elements of the system can be determined. These interval should be determined 
using the „3σ-rule” mentioned above, that is the vector of their minimum values: 
                                                  yyy ˆ3~

min −=   ,          (15.14) 

and vector of their maximum values: 
                                                  yyy ˆ3~

max +=   .         (15.15) 

 
15.3. The Inverse Method 
 

It is possible, that task and work of given system limit strictly output parameter 
values and their tolerances determined by equations (15.14) and (15.15) cannot 
meet these requirements. Then the manufacturing tolerances of internal parameters 
have to be determined on the basis of the required tolerances of the external system 
parameters. This task can be solved by the inverse method of the problem. 
 The required variances of the internal parameters should be determined by 
equation (15.9). The vector x̂  that satisfies the equation 
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                                                  0)ˆˆ()ˆ( 2 =−= xSyxf           (15.16) 
should be estimated by using any search of optimum method. 
 For determination of required expected values of internal parameters the 
equations  (15.13) should be rearranged 
                                                ~ (~ )y Ye S x X ek p− = −          (15.17) 
and auxiliary vectors 
                                                          u y Yek= −~            (15.18) 
and 
                                                         v x X e p= −~            (15.19) 
should be introduced. Then the equation (15.17) will modify to the following form: 
                                                               u Sv=   .          (15.20) 
 On the basis of the auxiliary vector u  - see equation (15.18) - and tolerance 
coefficient matrix S  - see equation (15.8) -, the auxiliary vector v  should be 
estimated by using scalar-vector function 
                                                   f v u Sv( ) ( )= − 2   .         (15.21) 
 Then the vector of the expected values required of internal parameters should be 
determined by equation 
                                                    ~x v X e p= +   .          (15.22) 
 The vectors of minimum and maximum values of the required manufacturing 
tolerance zones of internal parameters: 
                                                      xxx ˆ3~

min −=            (15.23) 
and 
                                                       xxx ˆ3~

max +=   .         (15.24) 
 These data have to be investigated from the technological and the 
manufacturing point of view. If the technological possibilities do not meet the 
required quality, on the basis of the practicable tolerance zones of the internal 
parameters should be determined and the base investigation should be performed 
once more while the external system parameters will meet the requirements. „Use 
the inverse method of the inverse method.” It is also important to mention that this 
method does not give the unambiguous solution of the technical problem 
mentioned above. Because it uses any estimation process. This method is „only” an 
effective adjuvancy to determine the most practicable manufacturing tolerances of 
the internal parameters during the design of the system. 
 
15.4. Case of Unknown Distributions 
 

The next step is supposing that the measures of made elements of the examined 
system have unknown distributions, but they are independent random variables. 
 Then the expected ( ~x ), maximum (xmax) and minimum values (xmin) of internal 
parameters should be determined and arranged into vectors. 
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 Using the equations (15.10) - (15.13), the expected values of external 
parameters can be determined. 
 To determine the possible maximum and minimum values of external 
parameters vectors of relative values of the internal ones should be determined: 
                                     )( max

1
max peXxXx −= −δ   ,        (15.25) 

                                   δ x X x X e pmin min( )= −−1   .        (15.26) 

 The so called „positive diagnostic matrix” and „negative diagnostic matrix” 
should be introduced. Elements of first the one are the positive-sign elements of the 
original diagnostic matrix - or zero: 

                                     D d
d if d

if dij
ij ij

ij+ += =
≥
<

















0
0 0

  .      (15.27) 

Another one's elements are negative-sign elements of the original diagnostic 
matrix - or zero: 
                                                       D D D− = − +   .         (15.28) 

 Knowing the above mentioned matrices, the vectors of relative maximum and 
minimum values of the external parameters: 
                                        δ δ δy x xD Dmax max min= + + −   ,       (15.29) 

                                        δ δ δy x xD Dmin min max= + + −   .       (15.30) 

That is, using equations (15.25) and (15.26) : 
                         [ ]δ y X D x X e D x X ep pmax max min( ) ( )= − + −−

+ −
1  ,     (15.31) 

                         [ ]δ y X D x X e D x X ep pmin min max( ) ( )= − + −−
+ −

1  .     (15.32) 

 Then use the nominal values matrix of external parameters and the k-
dimensional summation vector, the vector of the maximum values of external 
parameters: 
                     [ ]y X Y D x X e D x X e Yep p kmax max min( ) ( )= − + − +−

+ −
1  ,    (15.33) 

and the vector of their minimum values: 
                     [ ]y X Y D x X e D x X e Yep p kmin min max( ) ( )= − + − +−

+ −
1  .    (15.34) 

 In case of unknown distributions the inverse method of the problem cannot be 
solved. Then it is acceptable that you suppose normal distributions of internal 
parameters and use the inverse method depicted by the Chapter 15.3. to estimate 
the required manufacturing tolerances of internal parameters of the designed 
system. 
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