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CHAPTER 9

THEORETICAL BACKGROUND

9.1 Introduction

The model is a simplified copy of the real system which emphasizes its
important characteristics and neglects secondary characters are not determinant
from the point of view of the investigation. The abstracted model can be analog,
homologue and mathematical one.

The homologue model is similar to the real system geometrically. For example,
wind-tunnel models of airfoils or aircraft are homologue models. The analog
model does not need to be similar to the real system, but its principle has to be
analog with the process occurring on the real modeled system. As a rule, an analog
computer means an analog model [27].

9.2 The Mathematical Model

In the engineering practice the most widespread model is the mathematical one.
Nowadays, the computer technology and numerical-mathematical methods develop
quickly and at the same time diagnostics methods that are based upon the
mathematical modeling become important and developing part of the engineering
practice.

The mathematical model gives the most concise characterization of an
occurrence [4]. The mathematical model is the mathematical equation or system of
equations which describes the internal principles of the process occurring on the
system from the point of view of the given investigation.

On the basis of the characters of mathematical equations which describe the
behavior of the system or their determination, the following mathematical models
can be distinguished in pairs [15]:

Static - Dynamic

The mathematical model will be a static one if the state of the system can be
described by algebraical equations or differential equations which do not contain
derivatives with respect to the time. As a rule, they are called as stationary or
steady models.

The dynamic (non-stationary) mathematical models describe the changes of the
system parameters depending on the time. They can be vulgar or partial
differential equations. It is possible that the changes of the system parameters can
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be described by not only on a time interval, but on a transformed domain chosen
practically.

Linear - Non-linear

The linear models consist of only variables or their derivatives multiplied - in
general stationary - coefficients. A linear mathematical model can be a linear or
linearized equation or a system of equations.

The non-linear mathematical models are free from the requirement mentioned
above. At least one of the equations which describe process occurs in the system is
non-linear.

For simpler solving and investigation, the non-linear mathematical models can
be transformed into linear ones (see the Chapter 10.3).

Continuous parameter - Discrete parameter

In case of continuous parameter (continuous time) models the dependent
variables can have values at every moment of the investigated time interval
continuously.

The mathematical model is a discrete parameter (discrete time) one if its
dependent variables can only have some value at certain moments of the
investigated time.

As a rule, continuous time processes are modeled by discrete time models when
the equations are solved numerically by any time-shifting.

Continuous state-space - Discrete state-space

If the variables can have all value continuously, the mathematical model is
called a continuous state-space one.

A mathematical model is considered to be of a discrete state-space one if the
values of the dependent variables constitute a count finite or non-finite set.

For easier solving, continuous state-space processes can be transformed to
discrete state-space one by discretization.

Deterministic - Stochastic

In case of a deterministic model, the dependencies of output parameters on
input parameters can be described unambiguously in some time internal or domain
of the independent variables.

Stochastic (random) mathematical models contain random functions which can
describe interdependencies between dependent and independent variables of the
examined system.

Obviously the list mentioned above of the kinds of the mathematical models is
not complete, of course. Mathematical model realized in the engineering practice
means the synthesis of the above mentioned ones.
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9.3 Creating Mathematical Model

The logic and the type of the modeling are determined by answers for the

following question:

»

¥ ¥ ¥ ¥ ¥ ¥

3

What are the main goals of the investigation based on mathematical
modeling?

How can the mathematical model be set up?

How can the mathematical model be checked and qualified?

What is the most optimal strategy of the collection of the missing data?
How can the non-linearity be solved?

What are the economic and technical requirements?

Can you experiment with the real system continuously for the checking of
the model?

How can the mathematical model be simplified?

What is the most optimal model for the investigation of the real system?

The setting up of a real model can be carried out based upon the logical scheme

that figure 9.1 shows. The possible errors are written in italics [25].
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CHAPTER 10

METHODOLOGY OF MATHEMATICAL
DIAGNOSTIC MODELING

10.1. Introduction

In this chapter the basic methodology of mathematical modeling of technical
systems will be shown. Since the author’s main goal is to demonstrate it basically
for engineers who like to use mathematical models during their work, the method
will be shown in the case of the example shown by Figure 10.1.

L A

SYSTEM N
e
Y oh i Kk 1@
| | | ]
v v LA
I a I b \ e
a yis > ® ——>

Figure 10.1. Block and Block-Diagram of the System
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10.2. The Setting-up of the Mathematical Model

The setting up of mathematical model should start with splitting up the
investigated system into its functional units. The Figure 10.1. demonstrates this
step of the modeling.

Now it is a very important question that which part of the system is necessary
for modeling of its investigated regime. For example in case of a stationary regime
of pneumatic and hydraulic systems, the filters are not important equipment.
Because of in this case the pressures in the system have been equalized. But during
their non-stationary regimes the filters have very important function as chokes
which influence the change of pressures in several chambers of the system in the
function of time.

These above determined units should be examined and the interdependencies
between their input and output parameters should be established mathematically. In
the technical practice, the mathematical model can be written basically in two
ways:

=  WHITE BOX METHOD;

The model should be written by analytical equation on the basis of scientific
knowledge. In this case you should use physical rules which depict processes
occurring in the investigated equipment. Using white box method, you have to
know the working principle and the nominal (designed) values of all internal
parameters of given system unit.

=  BLACKBOX METHOD.
The model is written by analyzing of the output parameters responded to the given
input ones. This method should be used if the physical processes occurring in the
parts of the system and internal structures of equipment is not known. In this case
the mathematical model should be set-up by the investigation of the behavior of the
real system. For example one of the black box methods is the dimensional analysis.
The equations mentioned above form the mathematical model of the system.
For example (for following demonstrations) this model can be written in the case
mentioned above, that is the mathematical model of the system see Figure 10.1. :

= EquipmentI.:

a=hca (10.1)

= EquipmentII.:
b=a+i+p (10.2)

> Equipment 11I. :
c=ay” (10.3)

>  Equipment IV.:

K1
K

o= Ko * (10.4)

b
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or in a simpler way:
f(y)=9(x) (10.5)

where:

X - Vvector of dependent parameters:

x'=[a b c e ; (10.6)
y - vector of independent parameters:
y=lh ai gy k1 o . (10.7)

The elements of the vectors are parameters of the example system - see Figure
10.1. The « ; B ; y and w are internal parameters of equipment (for example
stiffness of spring or flown area). Thea ;b ;c;e; h;i;kand ]l are the input and
output parameters of the given system and equipment (for instance pressures, mass
flow and power).

10.3. Setting-up of the Linear Mathematical Diagnostic Models

For setting up a linear diagnostic model, the mathematical model which is
basically a non-linear system of equations should be linearized. For linearization,
the following methods can be used:

LOGARITHMIC LINEARIZATION;
DIRECT DIFFERENTIATION;
TAYLOR SERIES;

LIE-MAGNUS SERIES.

¥¥¥+ ¥

In the following only the logarithnic linearization will be depicted in detail,
because this method is not well-known.

10.3.1. The Logarithmic Linearization

Using the logarithmic linearization, firstly, the natural logarithm (to e base) of
both sides of the general non-linear equation

y = f(X;%;5...%,) : (10.8)
should be formed:
Iny=Inf(x;X,;..X,) . (10.9)
As the next step, the total differential of the latter one should be formed, using
the basic differential quotient of the natural logarithm:

1
(Inp)== : (10.10)
n
and the rule of derivation of the function of functions. We introduce the equation
9B BB _sp (10.11)

ﬂi ﬁl
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and substitute for the equation given above formally. Then you get the equation

oy = Ko, + K, 0%, +..K o,

(10.12)

which describes the relation between relative changes of different variables of the

original equation (10.8) by a linear form.
See the logarithmic linearization of the model set-up above:

> In case of equation (10.1) the natural logarithm of both sides:
a=hca = Ina=In(hca)=Inh+Inc+Ina

The total differential :
da dh dc da

a h ¢ «a ’
then:
da =0+ +doa

> In case of equation (10.2) :
b=a+i+p = Inb=In(a+i+ p)
The total differential :

B 1 eyt g1 g

b_a+i+ﬁ’ a+i+pf a+i+pf

X.
In this case every term should be multiplied by A

Xj
d__ 2 gt G P s
b a(@a+i+p) i(a+i+p) pla+i+p)
b= s 5P sp
a+i+p a+i+p a+i+p

> In case of equation (10.3):
c=ay® = Inc=Ina+xliny

dc da dy
—_— =4k
c a 4
then:
o =da+ Koy
> In case of equation (10.4):
x1
K —
e:% — Ine=In2+Ink+Inl+* Lo —Inb
K

the derivative of a constant (In2) equals zero, that is:

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)
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de_dk, dl x-1do db (10.24)
e k | K o b

in other form:

o=k +8+5 50— (10.25)
K

The logarithmic linearization should be used in case of thermodynamic models
and equations because of there are exponential terms.

10.3.2 Direct Differentiation

Using direct differentiation, as a first step, the total differential of both sides of
the initial equation

y=f(x1;x2;...%n) (10.26)
should be formed:
dy:af(xl;xz;...xn)XmerJré3f(x1;x2;...xn)dxn . (10.27)
8X1 axn

Then both sides of the last equation should be multiplied by same sides of the

X-
general equation and all elements should be multiplied by 4.

Xi
dy _ of (X5 %5 X,) X dx +...
y 0%, f (X0 Xy5 X)X,
”+8f(xl;x2;...xn) X, ix,
oX,, f(X Xy X)X,
(10.28)
Using the coefficients:
K; _ Of (X5 Xp5-.- Xp) Xi (10.29)
OXj f (X5 X25... Xp)
and equation (10.11), the following linear system can be achieved:
oy = KoK +...+ K Kp . (10.30)

This method is basically suggested if the general equation cannot be
decomposed to multipliers.

10.3.3. The TAYLOR (LIE-MAGNUS) Series

In this case TAYLOR-series of the general equation
y=f(X:Xo...Xp) (10.31)
should be developed:

y+Ay: f(Xl;Xz...Xn)+Za f(xl;xiz"'xn).ll
i=1 axl il

AX{ + ... (10.32)
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and its more than first-order terms have to be neglected

Ay:éf(xl;xz"'X”)AXﬁ... . (10.33)
6X1
Then its both sides should be divided by the same side of the initial equation:
Ay _ (xiXp. %) 1 B Axg+.n (10.34)
y X1 f (X, %0...Xn) X
Using equations (10.11) and (10.29) the following equation can be achieved:

This linearization method can be used if the general equation can be derivable
any times. The linearization using by TAYLOR series is applied basically in flight-
mechanical investigations.

The LIE-MAGNUS series method is the so called matrix-form version of the
TAYLOR series one that can be used for linearization of non-linear system of
equations. This method uses the derivation matrix to derive the initial system of
equations.

10.3.4. The Diagnostic Matrix

The equations (10.15) ; (10.19) ; (10.22) and (10.25) form a system of equations
that is the linear (linearized) mathematical diagnostic model of system shown by
Figure 10.1.

The linear system of equations achieved in this way describes interdependencies
between relative changes of independent (%) and dependent (8y) parameters from
the point of view of the given investigation - see equations (10.6) and (10.7). This
model can be written in the following matrix formula:

Ady = Box (10.36)

where A and B are coefficient matrices of external and internal parameters of the
investigated system.
In case of system shown by Figure 10.1 the coefficient matrices are:

1 0 -1 0]
__ 8 0 0
A=| a+i+p , (10.37)
= 0 0 1 0
0 1 0 1
11 0 0 00 0]
00 - ! s _ﬂﬁ 00 O
B= + 1+ +1+ 10.38
2500 0 0 00 O (10.38)
0 0 0 0 0o 11 &1
L K




METHODOLOGY OF MATHEMATICAL DIAGNOSTIC MODELING 89

Using the

D=A"B (10.39)
diagnostic matrix, the equation

oy = Dox (10.40)

can be used for diagnostic investigations that will be shown in the following
chapters.

10.4. Solutions of Non-Linear Mathematical Models

The non-linear mathematical model set-up in Chapter 10.2. should be solved.
Because a real technical system is a multiple-unit one its mathematical model is a
system of equations. In case of non-linear systems of equations few basic methods
(for instance the chord-method) of solution of non-linear system cannot be used. In
the technical practice the following methods are basically used to solve a non-
linear system of equations:

> NEWTON-RAPSHON METHOD;
> GRADIENT METHOD;

10.4.1. The NEWTON-RAPSHON Method

To solve the non-linear system of equations
fi(Xg;..; %) = 0
: : (10.41)
fa(Xg;..5%q) = 0
suppose that X3 ; Xo1 ... Xn1 are its an approximate solution. In this case :
Afy = fi(Xq;...5%p) . (10.42)
Then the Taylor series of functions should be developed and its more then first-
order terms have to be neglected:

M A ... L Axg, = Afy
(10.43)
Iy A ... I Ax, = Af,

The linear system of equations (10.43) should be solved to vector Ax by any
method and using this solution the next approximate solution is going to be:

Xl, j+1 = le j + AXl
: (10.44)
Xnj+1 = Xn,j A%
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If all x; fulfill the following inequality
‘xi, j‘ <e (10.45)
the solution can be accepted, where:

€ - theacceptable deviation.
10.4.2. The Gradient Method

The essence of this method is that changing the value of the given scalar -
vector function is studied in normal direction of the level surface in the n-
dimensional space determined by the dependent variables of the function.

Starting from point X, that means the zero-th approximate value belongs to
level surface f(x) = f(go), you should determine the normal direction that is the
gradient of the surface at point X, . Along this gradient vector, you should
determine the first approximate value X and its level surface f(x) = f (51). Then

you should determine point (and approximate value) X, and its surface
f(x)= f(x,) andsoon ...
Because
fx)> f(x)> f(x,)> ... (10.46)
you can get a point where the value of function f (x) is the minimal. This vector is
the solution of the given equation.

Figure 10.2 The Gradient Method
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The gradient, which is the vector that shows the direction and intensity of the
increasing of the scalar - vector function f (X), can be determined by equation

gradf (x) =Vf(x) (10.47)
where:
V - Hamilton (nabla) operator:
_i_
24
9
V= @.(2 (10.48)
N
_O’Xn

The gradient method is illustrated by Fig_ure 10.2 and its iteration equation is

Xig =X —AVE(X) (10.49)
where:

Ai - multiplier of i-th iteration step
i=1;2; ..






CHAPTER 11

SETTING UP OF MATHEMATICAL
MODELS (EXAMPLES)

11.1. Introduction

Demonstrating the possibility of the use of the above-mentioned mathematical
modeling methods, in this chapter the filling up of mathematical models will be
shown in case of pneumatic system of the helicopter Mi-8 and the starter engine
Al-9V.

Filling up of mathematical model of real technical system requires as to know
exactly the given system, its work and its technical features. In this chapter the
most minimal technical feature of the investigated systems and equipment will be
shown because the author only would like to demonstrate the methodology and
methods of mathematical diagnostic modeling.

11.2. The Pneumatic system of Helicopter Mi-8

The tasks of pneumatic systems of helicopter Mi-8 are to brake the main
undercarriage wheels and to be compressed air-source in case of field operation.
This system does not have anti block equipment and it cannot carry out differential
braking for steering of helicopter during its taxing. Schematic diagram used in
flying-technical practice of the system in shown by Figure 11.1. an the Table 11.1.
shows its main technical data [1].

Tank pressure: 40-50*  bar
Volume of tanks 10000 cm®
Maximal control pressure: 11+ bar
Maximal brake pressure: 31" bar

Table 11.1. Main Parameters of the System
11.2.1. Brake Control Valve PU-7

If the pilot pulls the brake lever being in the left control stick, it will have a wire
and a lever moving the rod. It moves down and it has the reducing spring moving
the piston down (see Figure 11.2) which is so to close the small releasing valve.
The piston moves down too and it opens the small intake valve. The tank-pressure
air streams out the space being under the big intake valve. The tank-pressure air
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pushes down and opens the big intake valve that the compressed air streams into
the space being under the piston and to the brake application valve UPO 3/2 . The
pressure in under-piston - B - space increases and the compressed air pushes the
piston up. The big intake valve will be closed slowly.

5 T

15 12 9

Figure 11.1. Pneumatic system of the helicopter Mi-8
1 - brake control valve PU-7; 2 - brake application valve UPO 3/2; 3 - brake-
cylinders; 4 - automatic pressure controller AD-50; 5 - air compressor AK-50; 6 -
tanks; 7 - ground connection; 8 - pressure-gage MV-60; 9 - one-way valve; 10;13 -
air filter; 11 - pressure-gage MVU -100; 12 - sedimenter-filter;

If the forces acting upon the piston are in equilibrium, the piston will be stopped
and control pressure (under the piston) will develop.
The forces which act upon the piston are the following:

downwards:
- force of the reducing spring Fa;
- ambient pressure Py A
upwards:
- control pressure PA,;
- tank pressure P A

- force of spring between small valves F,;

Therefore the equilibrium:
pCAp +F,+p,A =F,+py Ap , (11.2)
and control-pressure (as the output parameter of PU-7):
_ Fsl+ Pu Ap - pap% - FsZ
‘ A

p

[Pa] (11.2)
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where:

A, - area of brake control valve piston;
pa - tank pressure after braking;

p. - control pressure;

py - ambient pressure;

oA | spring
] e

. Ap

-spring
VVZH

——Ag

Figure 11.2. Brake Control Valve PU-7
A - tank-pressure chamber; B - control-pressure chamber.

11.2.2. The Brake Application Valve UPO 3/2

The control-pressure air pushes down the piston. It closes the bleading valve
than opens the intake valve. Therefore tank-pressure air streams into the space
being under the piston and to the brake-cylinders. If the pressure of under-piston
space increases, the piston will move up and intake valve will be closed (Figure
11.3).

If the forces which act upon the piston are in the equiblirium, the piston will
stand and the valves will be closed. In this case brake-pressure is developed and the
system brakes the main undercarriage wheels of the helicopter.

The forces which act upon the piston are the following:

downwards:
- control pressure PA;
upwards:
- brake pressure PoAs;
- ambient pressure Py A

- force of the spring F..
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pcAl: pHAZ+F53+ pbAS

Then the brake pressure:

- -F
pb — pcAi pAHSAZ s3 [Pa]

(11.3)

(11.4)
where:

A, - area of n-th piston of brake application valve
py, - pressure of brake-air;

A A LTI

J

///

4

b

Figure 11.3. The Brake Application Valve UPO 3/2
A - control-pressure chamber; B - ambient-pressure chamber; C - tank-pressure
chamber.

11.2.3. The Brake Assembles

They have two brake-blocks and two cylinders. Their brake clearance can be
adjusted.

The brake force depends on the followings:
- friction coefficient

M
prestressing force of the restoring spring Fi

(11.5)
brake-shoe clearance
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- stiffness of the restoring spring S;;

- difference between the brake and ambient pressures P, — Py s
{ - 'piston - brake-shoe" transmission ipj }
{ - ‘restoring spring - brake-shoe" transmission iSj }

Figure 11.4. The Brake Assemble

. \2 :
F =[(p,—-p )Aci.—(lﬂ] z.s.—lijx S |u; (11.6)
j b = Pr) el %1 77 %% |H :

isj isj

that is:
A Y i
F, :[(pb — P A, —Iﬂ[lﬂ z, + XOJSJ-II,UJ- [N] (11.7)
sj sj
where:
A. - area of brake-cylinder;
Xg - prestressing distance;

11.2.4. The Tanks

The helicopter Mi-8 has two compressed-air tanks. Their task is the compressed
air conservation. Both of them have 5000 cm® volume. They are in the stiffening
beam of the main undercarriages.

During the braking compressed air is led up to

- control-pressure sub-system
(PU-7, UPO 3/2 equipment and connecting tube) V oo(Pe — Py)
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- brake-pressure sub-system;
4
(UPO 3/2, brake cilinders and connecting tube) (Vp, + z 1y Z; Aij( Py, — P
j=1

Supposing adiabatic expansion the tank pressure after braking is:

4
ch(pc - pH)+£VpI +zipjszij(pb )
=

P, =1 P —

Vt
) r - k-1
4 -
ch(pc - pH)+[VpI +Z|ijJAbJJ(pb - pH)
1- - [Pa]
Vip,
) GET:)
where:
p: - tank pressure before braking;
V- volume of the control-pressure sub-system;
Vi - volume of the pipe-line;
V; - volume of the tank;
11.2.5. Linearization
After their logarithmic linearization:
the equation (11.2) became
M, = Kok — K,0F, — K, +K,py (11.9)
the equation (11.4) became
Py = Ksp, — Kedb; —Ki0py, (11.10)
the equation (11.7) became
oF; = Kgdp, — Kgdpy —Kypoz; =K 388 (11.11)
the equation (11.8) became
4
M, = Kpdp, — Kypdp, — Ky, dp, +K155pH+Z K1652j . (11.12)

j=1
For the following diagnostic investigations, independent parameters are the
input ones of the units of the system. The dependent parameters (oY) and

independent ones (o' X) should be separated into the following vectors:
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Sy' =[o, o, OF OF, O, OF, ] (11.13)
55T:[6Fs1 ok, oy Oy o & &, &, o1, & o, &, 5p‘]

(11.14)
A
1 1 1 1
Clesl_Fsz_'_AppH Aspa
Ks_pcc:Ai Ke_% K7:Aé:pH
2 2 2
C2 = pcAl_Fs3_ pHAZ
Al A
Kg — C]ij pb Kg cj é)j pH
3 3
i\ i (i
P lsz PPz 4%l
K i) A
10 C3 ’ 11 C3

CB =(pb pH)ACJ pj _i_(ll_.z +XOJS

sio\si

frgran)

P . Ve Pe .
K, =-t K, =—®¢. K. =
12 C4 13 VtC4 14 C4
[ +Vpl+zlpj JAbJJpH
K _ . K pj JAb](pb pH)
15 = C ’
4
ch(pc_ [Vpl_'_zlpj ] ](pb pH)
C4 =P - V.p
t Mt

Table 11.2. The Elements of the Coefficient Matrices
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The coefficient matrices of the dependent and independent parameters are

1 0 00 0 0 K,
-K; 1 00O0O0 O
0 -Kg 1 00O O
A=[ 0 -K, 0100 0 (11.15)
0 -K; 0010 O
0 -Ky 0001 O
Ky K, 0000 1]
K, 0 0 0 0 0 0 ]
~K, 0 0 0 0 0 0
K4 - K7 - K9 - K9 - Kg - Kg K15
0 -K, O 0 0 0 0
0 0 -K, O 0 0 Ky
0 0 -K, O 0 0 0
B"=| 0 0 0 -K, O 0 Ky (11.16)
0o 0 0 -K, O 0 0
0 0 0 0 -K, 0 K
o 0 O 0 -K, O 0
0o 0 0 0 0 -K, Ky
0o 0 0 0 0 -K, O
0o 0 0 0 0 0 -Ky

The elements of the coefficient matrices - multipliers of the equations (11.9) -
(11.12)- are determined by the Table 11.2.

11.3. The Starter Engine Al-9V

The tasks of starter engine Ai-9V are to assure compressed air to starter-turbines
of main engines of the helicopter to start them (,,air-topping” regime) and to supply
the direct current electrical system of the helicopter as an emergency power source
(,generator” regime). The Figures 11.5. and 11.6. show the characteristics of the
compressor and turbine of the engine, which will be necessary for mathematical
modeling.

For exact and accurate determination of momentary regime of this engine four
parameter have to be known. Therefore its mathematical model have to be a system
of equation that was four equation. They are equations which depict - in case of the
air-topping regime:
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= the equality of mass flow
between compressor and turbine:

Mk—MmMi+ma—mr =0

where:

rhk - mass flow of the compressor;
r;h - mass flow to main engines;
r;w i - fuel mass flow;

r;h - mass flow of the turbine.

between turbine and exhaust nozzle:

mT - men = 0 y
where:

Men - mass flow of the exhaust nozzle.
= the equality of the powers

between compressor and turbine:

Ptnm - Pk - Pa =0 ,
where:
P, - power of the turbine
n., - mechanical efficiency of the rotor;

P, - required power of the compressor;
P. - power of the auxiliary equipment.

a

> control law:

n=const.
where:
n - momentary number of revaluation;

101

(11.17)

(11.18)

(11.19)

(11.20)

The equations (11.17) - (11.19) form the thermodynamic mathematical model of
starter engine AI-9V in case of air-topping regime. To solve them, their inner
relations should be discovered. Since inner relations mentioned above the

mathematical model will be a non-linear one.

In the following, the inner relations of the thermodynamic model will be shown

shortly and basically.
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11.3.1. The Ambient Parameters

The ambient parameters should be determined on the basis of International
Standard Atmosphere [24]:

= ambient (inlet) temperature:
T,(H) =288-0,0065H K] ; (11.22)
where:
H - flight level [m]
= ambient (inlet) pressure:

H 5,256
p(H) = 101325[1 - MJ [Pa] ; (11.22)

11.3.2. The Compressor

= Temperature after compressor:

k-1
T~ .
T,=T/1+ K] ; (11.23)
T
where:
K - adiabatic exponent [-];
7, - pressure-ratio of the compressor [-];

n. - isentropic efficiency of the compressor [-].

The latter two parameters should be determined by characteristic of the
compressor shown by Figure 11.5.

= mass flow of the compressor:

; 2 r 2 Ohes Py 1.
Mk _(K-l-lj (x DR \/f Aq(A), [kogs™; (11.24)
where
A, - area of inlet scoop [m7];
O s - coefficient of pressure loss of inlet scoop [-];
R - specific gas constant [kJ(kgK)™;
q(4), - non-dimensional mass flow rate of the compressor [-].

= power of the compressor:

Po=cu(T, —Tl)rﬁk [kW] ; (11.26)
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where:

C, - massspecific heat at constant pressure of air [kI(kgK)™.

q(n)

07

q(n)
0,6 q(x)o 0,7

Figure 11.5. Characteristic of the Compressor

0.4 0,5
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= pressure after compressor:

P2 =7 Ohes Py [Pa]

11.3.3 The Combustion Chamber

(11.27)

The gas temperature after combustion chamber can be determined using method

and equation developed by Professor SANTA [28, 29]:

o _ ~bi++Jbj’ — dachi

3 2ac

where:
bj =1,07626 +1,823q,

bi =-71,972 -168,206q, — bk

ac = 4,05714-10° +6,568-10"q,

bk = 7,9, +c,(1+4,)

¢, =18107 +0,912577T, + 1,151786T,

g, - fuel-air mass flow ration [-];

ny - efficiency of the combustion chamber [-].

= pressure after combustion chamber
Ps = PO [Pa]

11.3.4. The Turbine

= Temperature after the turbine:

T,=T;|1-n; 1—%
s
where:
ny - isentropic efficiency of the turbine [-];
7y - pressure ratio of the turbine [-].

K] ; (11.28)
(11.29)
K] ; (11.30)

The efficiency of the turbine should be determined by characteristics of the

turbine - see Figure 11.6.

- mass flow of the turbine:

rhT:( 2 ]“ 2 s pqea),

K+1

(x+DR T,

[kgs™] (11.31)
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where:
A - minimal area of row of the blades of the turbine [m?;
q(4); - non-dimensional mass flow rate of the turbine [-].

The non-dimensional mass flow rate of the turbine can be determined on the
basis of the characteristic of the turbine, which can be seen in Figure 11.6.

= power of the turbine:

Po=mrc,(T,-T,) W] , (11.32)
where:
. -1
Ch, - Mmass specific heat at constant pressure of the gas [kJ(kgK)~].
My
0.84 0.4 2u=0.5
0.76 1.4 1.6 1.8 TCt

1.4 1.6 1.8 T

Figure 11.6. Characteristic of the Turbine

= pressure after the turbine:

Py = Ps [Pa] . (11.33)

4
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11.3.5. The Exhaust Nozzle

= The pressure ratio of the exhaust nozzle:
_ Py

Ty = -] (11.34)
p(H)
= non-dimensional velocity of exhaust nozzle at the exit:
Ay = ||1- 171 K+l 7, < (K_HJH
L 2
TToX [-] (11.35)
A, =1 it 7, > (’(—”Jl
2
> non-dimensional mass flow rate of the exhaust nozzle:
1 1
(), =4, (1=Kt (e (11.36)
Kx+1 2

- mass flow of the exhaust nozzle:

e =22 p(H) .
men_[’“rl} (x+DR T, Ao TkosT - (11.37)



CHAPTER 12

APPLICATION OF THE MODELS FOR
DIAGNOSTIC INVESTIGATION

12.1 Introduction

In this chapter the diagnostic investigations which are based on mathematical
modeling will be shown. This chapter will show their methodology and then
illustrate their possibilities of use by the examples of pneumatic brake-system of
the helicopter Mi - 8 Hip and starter engine Al - 9V.

12.2 The Sensitivity Test
12.2.1 Methodology

The essence of the sensitivity test is that the failure or operational wear-out of
the given functional unit is simulated by changing of its independent variables
(only in the diagnostic model and not in the real system!) [29]. On the basis the
linear or non-linear mathematical model of the investigated system, it can be
determined how sensitive the dependent system variables will be to the simulated
changes.

If only one of the independent variables is changed, the investigation will be
called an one-parameter sensitivity test. If the number of the changed independent
variables is more than one, the several-parameter sensitivity test is used.

It is important to mention that the changes of independent variables cannot be
more than about 1 or 2 % depending on the intensity of the original model's non-
linearity. These models are basically either linearized one or the non-linear one
which need to be solved by any numerical methods, which usually bases on
linearization. Therefore, depending on the non-linearity of the original model, the
results of the sensitivity test can have difference from real influences of the
simulated changes. But the result shows the direction and order of magnitude of the
real influences with enough accuracy

The results of sensitivity test can be used for the conclusions to come about the
technical features of the given system and its behavior in case of simulated failures
without that you put out of order the real system during the planning or
modification of the system.

This method can be used for troubleshooting too. In case of malfunction of the
system for localization of the trouble, we can test the fault supposed logically by
us.
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12.2.2 Case of Pneumatic System of Helicopter Mi - 8

In this case we use the linear mathematical diagnostic model of the pneumatic
brake-system of the helicopter Mi - 8 - see equations (11.13) ...(11.16) [12;21].For
the one-parameter sensitivity test the following independent parameters were
changed:

= tank pressure prior to braking - py;
= force of the reducing spring of the PU-7 - Fg;
> stiffness of restoring spring of the 2" brake-shoe - s,;
> clearance of the 2™ brake-shoe - 2.
pe | pp | F F, | F | R | ps
Apy=-1% (0,5 bar)
3,492e-1 | 3,764e-1 | 3,960e-1 | 3,960e-1 | 3,960e-1 | 3,960e-1 | -1,022
AF, = -1% (6,1 N)
1,273 | 1373 | -1444 | -1444 | -1444 | -1444 | 2279-2
As; =-1% (4,53 Nmm™)
o | o | o | 17%2 ]| o | o | o0
Az, =-1% (4 pm)

1,416e-5 | 1,527e-5 | 1,606e-5 | 1,285e-3 | 1,606e-5 | 1,606e-5 | -4,147e-5

Az, =-1% and As, = -1%

1,416e-5 | 1,527e-5 | 1,606e-5 | 1,9205e-2 | 1,606e-5 | 1,606e-5 | -4,147e-5

Table 12.1. Results of Sensitivity Test

[%]

05 X X X X
o — A

-0,5

-1,5
pc pb F1L F2 F3 F4  pa

Figure 12.1 Sensitivity of the System (Ap; = -1%)



APPLICATION OF THE MODELS FOR DIAGNOSTIC INVESTIGATION 109
[%]
0,5
0
-0,5
-1
-1,5

Ky X X

pc pb F1 F2 F3 F4 pa
Figure 12.2. Sensitivity of the System (AF,; = -1%)

[%]
0,02
X

0,015
0,005
0 X X X X
2 F3 F4

pc pb F1 F pa
Figure 12.3. Sensitivity of the System (As, = -1%)

[%]
0,01
0,001 X
0,0001 / \
0,00001 X——X X
pc pb F1 F2 F3 F4 pa

Figure 12.4. Sensitivity of the System (Az, = -1%)

For two-parameter sensitivity-test of the system, as an example, the 1 %
decreasing of the stiffness of restoring spring and clearance of the 2" brake-shoe
has been simulated. Its result can be seen in the figure 12.5.
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[%]
0,1

0,001

0,00001 X X X
pc pb F1 F2 F3 F4 Pa

Figure 12.5. Two-Parameter Sensitivity of the System (Az, = -1% and As, = -1%)

AF; [%]
1,50E-03 T
———% XX
1,00E-03
5,00E-04
0,00E+00 +
40 45 50 55 )
t
[bar]

Figure 12.6 Sensitivity of the System Depending on the Tank Pressure Prior to
Braking (Az; = -1%)

AFj [%]
2,00E-02 |

X
1,50E-02
1,00E-02
5,00E-03

0,00E+00 +
40 45 50 55

Pt
[bar]

Figure 12.7. Sensitivity of the System Depending on the Tank Pressure Prior to
Braking (As; = -1%)

The sensitivity test can be used in different match-points of the system. Then
the elements of the coefficient matrices have to be determined for all match-points.
For demonstration, the sensitivity-test have been performed in cases of different
tank-pressure prior to braking p;. You can see the influences of the 1 % decreases
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of clearance of the j-th brake-shoe z; (figure 12.6) and its stiffness of the restoring
spring (figure 12.7) depending on the tank pressure prior to braking p; . Figure 12.8
and 12.9 show the change of brake force of the j-th brake-shoe in cases of decrease
of its clearance and of stiffness of its restoring spring depending on the brake
pressure py .

AF; [%]
3,00E-03
X\\\'\,
- i e
2,00E-03 %
SV B
1,00E-03 "
0,00E+00
15 20 25 30 3
Po
[bar]
Figure 12.8. Sensitivity of the System Depending on the Brake Pressure (Az; = -
1%)
AF; [%]
5,00E-02
X—,\\\\\V\
2,50E-02 X\X*\x
T X%—
0,00E+00
15 20 25 30 %
Po
[bar]
Figure 12.9. Sensitivity of the System Depending on the Brake Pressure (As; = -
1%)

On the basis of this test you can state it that:

= the examined system is very insensitive to the anomalies of the operational
parameters;

= the sensitivity of the system decreases if the brake pressure is increased to its
nominal maximum value.

These can be considered beneficial with respect to the operation since great
deviations in the internal parameters are admissible in the course of operation. For
example, longer period between the checkings, repairs and overhauls of
maintenance can be determined.
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12.2.2 Case of the Starter Engine Al - 9V

For one-parameter sensitivity test of starter engine Al - 9 V, its non-linear
stationary thermodynamical model - see equations (11.17) ... (11.20) - is used. The
following independent parameters are changed:

isentropic efficiency of the turbine - my;

isentropic efficiency of the compressor - ny;

mechanical efficiency - Mn;

area of inner scoop - Ag;

stagnation pressure recovery coefficient of the combustion chamber - cg;
stagnation pressure recovery coefficient of the inner duct - o s
efficiency of combustion chamber - ng;

y¥¥¥¥+ v+

The result of the above investigation can be seen in the Table 12.2 and in the
Figures 12.10 - 12.16.

nk|T2|p2|m1|T3|p3|Qt|mt|nt|T4|p4

5 =-1%
0,28 | 028 [-041 [137 [028 [245 [2,02 [02 [1,63 [0,09
51 = -1 %

0,03 | 1003 [-0,05 [0,17 [0,03 [026 [0,21 [0,03 [02 0,01
51 = -1 %

0,23 | 023 [-259 [1,12 [0,23 [1,99 [1,65 [0,18 [1,12 [0,05
5A=-1%

-0,50 [-0,23 [-0,50 [-0,36 [-0,26]-0,50 [-0,42[-0,78 [-0,40 [-0,20 [-0,10
5o = -1 %

0,57 [0,23 [057 [-0,88 [0,77 [-05 [1,28 [0,39 [-04 (082 [-01
8Ghes = -1 %

0,09 | 1-0,92 [1,13 [0,43 [-0,92 [0,74 [-0,41 [-0,74 [051 [-0,18
SMet = -1 %
| | | | [1.01 11 | | |

Table 12.2. Results of Sensitivity Test
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[%]

2,5
2
15
1
0,5
0
-0,5

/-
A
A

pik T2 p2 ml T3 p3 qt mT pit T4 p4

Figure 12.10. Sensitivity of the Starter Engine én;=-1 %

[%]

0,3
0,2
0,1

-0,1

[%]

N

pik T2 p2 ml T3 p3 qt mT pit T4 p4

Figure 12.11. Sensitivity of the Starter Engine dn, =-1 %

x\x / \X\X /x\x

pik T2 p2 ml T3 p3 qt mT pit T4 p4
Figure 12.12. Sensitivity of the Starter Engine o, =-1 %
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[%]
0
X N /x/x
/
X X
05 x/ \x/ \x/x\ /
X
-1
pik T2 p2 ml T3 p3 qt mT pit T4 p4
Figure 12.13. Sensitivity of the Starter Engine 6A¢ = -1 %
[%]
1,5
X
okl A
0,5
0 o /\ "
X
VAR
-1
pik T2 p2 ml T3 p3 qt mT pit T4 p4
Figure 12.14. Sensitivity of the Starter Engine 66 = -1 %
[%]
1
05 / X
0 X X /\ \( <
_0,5 \ \/ \X
_l X\
-1,5

pik T2 p2 ml T3 p3 qt mT pit T4 p4
Figure 12.15. Sensitivity of the Starter Engine 66 pes = -1 %



APPLICATION OF THE MODELS FOR DIAGNOSTIC INVESTIGATION 115
[%]
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Figure 12.16. Sensitivity of the Starter Engine one = -1 %

The conclusions of the above investigation are the followings::

the mass flow rate to main engines m; decreases in all simulated cases;

the absolute temperature after T, the compressor changes the most
minimally;

the parameters of the inlet scoop ( Aus , O nes) have the most minimal
influences an the cycle of the engine that is on the investigated parameters;
the efficiency of the combustion chamber 7y has only the fuel mass
parameters (g; and m) increased;

the mechanical efficiency 7, has the most influences on the above-
investigated external parameters.

¥y ¥ ¥ ¥¥

12.2.4. Determination of Diagnostic Matrix

There is an other method to determine the diagnostic matrix of examined system
that is based on usage of its non-linear mathematical model.

If the original non-linear mathematical model has very sophisticated inlet
relationships and so functions (for example in case of gas-turbine engines), the
linearization by any method is very difficult and complicated. In this case the
following method should be used.

The investigated external and internal parameters should be chosen and

arranged into vectors X and Y. The non-linear model should be excited by the 1
% perturbations of the above-chosen external parameters one by one.

Knowing the result of base and "perturbed" models, the relative changes of
chosen internal parameters should be determined by the equation
577 _ 77pert. ~ Mhase , (12.1)
nbase
where:

Meer. - perturbed” value of general parameter 77;

Nbase - base value of general parameter 77.
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These relative changes should be arranged into the diagnostic matrix D
depending on the above-determined vectors X and V.

To demonstrate the possibility of to use of this method, it was used in case of
non-linear mathematical model of starter-engine Al - 9V by a very simple example.
For investigation, the following external

pressure ratio of compressor - 7 ;
increase of temperature in the compressor - ATy;

fuel mass flow ratio - m, ;
absolute temperature after the turbine - Ty;

mass flow ratio to main engines - m, ,

¥y ¥ ¥ ¥+¥

yT=|:7Z'k AT, m, T, ml} , (12.2)
and internal parameters were chosen:

stagnation pressure recovery coefficient of the inner duct - o ;
isentropic efficiency of compressor - 7 ;

isentropic efficiency of turbine - n;

stagnation pressure recovery coefficient of the combustion chamber o .

mechanical efficiency 7y ,
7

Z = [Gbcs 77k 77t O-et 77m] ' (123)
The diaqnostic matrix determined by the above-mentioned method_is:
-15675 -0,0024 0,3510 -0,0366 —1,0352

-12234 0,7539 01551 -0,0224 -01615
0,7739 -0,4662 -2,8423 50904 35961| . (124)
2,4468 -0,4765 -0,3101 0,0447 0,3229

| —0,4395 -0,3310 4,3752 -6,9589 -5,0412 ]

¥y¥¥ ¥+ ¥

[w)
[l

12.3 The Correlation-family test
12.3.1 Introduction

The correlation-family test of measurable external parameters of the examined
system is one of the diagnostic methods based upon a statistical method.

Its goal is to establish the correlation of external parameters between themselves
in case of anomalies or changes of internal ones [17]. The correlation coefficient
characterizes the strength of stochastic interdependencies of the random variables
[3]. Using the result of the analysis, which is the so called correlation-graph, sets of
external parameters can be determined in which the parameters have got strong



APPLICATION OF THE MODELS FOR DIAGNOSTIC INVESTIGATION 117

correlation between themselves. One of the members of a family can be chosen for
the measuring that the momentary technical state of the system can be determined
in the easier way with adequate safety.

If one of the two parameters that have got strong positive correlation, changes
in some direction, another one will change in the same direction most probably
according to the correlation coefficient. (If correlation is strong by negative the
changes have opposite directions.) In this case it is sufficient to measure one of
them.

The correlation-family test investigates the stochastic interdependencies
between the external parameters of the examined system. Using this method you
can choose those parameters which should be measured for the optimal
determination of technical state of the system.

Relation between phenomena is termed stochastic, if the course of one of them
influences another, but not unambiguously [23]. The strength of stochastic relation
of two random variables can be characterized by their correlation coefficient. The
correlation coefficient of random variables with finite positive variance can be

written in the
M[(7 =M (7)) (= M ()]

R(1, 1) = (12.5)
D(77)D(x)
form [7], where:
M - mean;
D - variance.
If n and p have no interdependence, then
R(7,4)=0 . (12.6)
If
R(n7,1)>0 (12.7)

n and p have positive correlation, and for example we can deduce generally the
inequation

> M (u) (12.8)
from the inequation

n>M(n) , (12.9)

and inversely, This means that the values of either parameter are bigger than their
means. In case of negative correlation that is

R(m, 1) <0 (12.10)
if inequation (12.9) exists, we can suppose that inequation
u<M(u) (12.11)

exists too. Then deviations of either random variable from their means have got
opposite signs.
It is important to note that the value of the correlation coefficient is always
between -1 and +1 that is
-1<R(mu) <1 . (12.12)
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The correlation coefficient R(7, 2) can be estimated statistically by equation

S g g)

i=1

$x-3e)$0n-5)

i=1 j=1 i=1

(12.13)

o

using the samples x;; X; ... X, and yi; Vo ... ;¥n Which belong to variables n and p
[7].

This is termed the experimental correlation of the samples x; ; x»; ... X, and
Yi; Y2, ... ; Ya tOO.

In case of several random variables the correlation coefficients r;; determined by
equation (12.13) can be arranged into the correlation-matrix

r, h, ... I,
I r. r.

R=| % % e (12.14)
ry T oo T

The correlation-matrix is always symmetrical and the elements of its main
diagonal is always equal to 1 that is:

and (12.15)

12.3.2 Methodology

For the usage of correlation-family test we have to have enough data for
statistical analysis. These data can be got by using the examined system or its
model. In practical aspect, it is most suitable to use the linear or non-linear
mathematical model of the system.

The first step is the determination of distribution of real values of non-
measurable internal parameters. For this, we can use the data got during filling up
the model or analysis of features of the system operation.

On the basis of distributions and statistical characteristics of the internal
parameters the model can be generated. Using these results and equation (12.13)
and (12.14), the correlation coefficients should be determined and arranged into the
correlation-matrix.

The coefficient which has the most absolute value should be chosen and its
parameters should be represented as the angular points of a graph. The correlation
coefficient should be written at this edge.

The coefficient with the most absolute value of the rows and columns of the last
two parameters should be chosen so that the ones which had been represented into
the graph. have to be left out. This parameter and coefficient should be represented
into the graph.
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Figure 12.17. Creation of Correlation Graph
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The correlation families should be separated so that the correlation coefficients
of the graph in each families have to be more than the determined limit. One of the
members of each families, chosen by the above-mentioned way, should be chosen
that can be measured the most suitably. For the choice, you have to consider that
the chosen parameter has to have strong correlation with another members of the
family, it needs to be measured easily. Then it is a very important question that
how many information given parameter has about momentary technical sate of the
investigated system. Analyzing the result of sensitivity test, it can be determined
(for example Chapter 12.3.4). For the choice of the most suitable measured
parameter, other (not mathematical modeling) questions have to be taken into
consideration depending on the system'’s tasks, works and construction.

One of the main questions of the correlation-family test is the determination of
the limit for separation of families. If you use higher limit, you will get more
families. In this case you can get more information about momentary technical
state of the system, but more families mean more measured parameters. They
require more technical and financial investment. If the used limit is lower, the
number of families will decrease. In this case, technical investment will decrease,
but the information which can be got about the system will or can decrease.
Therefore determination of this limit requires careful consideration. You have to
consider the feature of the examined system, the technical and financial
possibilities and the needed accuracy of the technical state determination. It is
important point of view that the consequence of troubles or the faulty work of the
system (catastrophe or disturbance). It is generally suitable that the limit should be
between 0,5-0,8 [12].

The other question of this test is the suitable number of statistical sample
(excitation of model) for exact determination of correlation coefficients. For
solution this problem the number of excitation should be grown increasingly until
differences between the same elements of the matrices are decreased below a
determined limit [14].

12.3.3 Case of the Pneumatic System of the Helicopter Mi-8
The correlation-family test of the pneumatic system of the helicopter Mi-8 has

been carried out, using its linear diagnostic model set-up in the Chapter 11.1 [18].
For excitation of the model the following parameters were changed randomly:

Parameter Distribution
force of the reducing spring of PU-7; uniform
force of the small spring of PU-7; normal
force of spring of UPO-3/2; normal
ambient pressure; uniform
tank pressure prior to braking; uniform
clearances of brake-shoes; uniform
stiffness of restoring springs of brake-shoes. normal

Table 12.3. The Exciting Parameters



APPLICATION OF THE MODELS FOR DIAGNOSTIC INVESTIGATION 121

The number of excitations was grown increasingly till differences between the
same elements of matrices decreases below 0,01. The correlation-matrix of the
brake-system got by the above-mentioned analysis is:

~ Pe Pb F1 F, Fi Fa Pa
1
0,921 1

0854 093 1

0,785 0865 0802 1

0851 0927 08 0812 1

0914 0958 0926 0865 0928 1
~0154 -0152 -0147 -0119 -0156 -0153 1
) (12.16)

The correlation-graph determined on the basis of the above matrix is shown in
figure 12.18, where the measured parameters are signed by thick curves.

70
I

Figure 12.18. The Correlation Graph of the Pneumatic System of Helicopter Mi-8
The conclusions of this investigation are the following ones:

= the output parameters of the system have got strong correlation between
themselves, except the tank pressure after braking

= measuring on only two parameters is sufficient, these ones are
- tank pressure after braking p, ;

Its measuring is suitable for checking of the compressed air support sub-system
too.
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- pressure of brake-air py ;
Its measuring is suggested because its correlation with the other members of its
family is strong and because it is a well-measurable parameter.

= gages of the helicopter Mi-8 measure the above-mentioned parameters,
therefore their choice during the planning has been proven proper.

12.3.4 Case of the Starter Engine Al-9V
For the correlation-family analysis of starter-engine Al - 9V | used nonlinear

thermodynamic mathematical model of the engine [19]. For excitation of the model
the following parameters were changed randomly:

Parameter Distribution
number of revolution normal
efficiency of the compressor exponential
efficiency of the turbine exponential
efficiency of the combustion chamber exponential
coefficient of pressure loss of the combustion chamber | exponential
coefficient of pressure loss of the inlet scoop exponential
area of the inlet scoop normal
mechanical efficiency normal
flight level uniform

Table 12.4. The Exciting Parameters

As you see from figure 12.19, the eleven chosen external parameters can be
separated into three correlation-families, but two of them are one-member ones.

On the basis of correlation-family test, the gas temperature after the turbine T,
should be measured. It characterizes the thermal load of the engine (mainly of the
turbine), it has strong correlation with another members of its family, and its
measuring can be carried out easily.

Only the member of another family that is the air pressure after the compressor
p2 is measured during main duty of the engine.

Only on the basis of correlation-family test, measuring of mass flow ratio to
main engines n.nl seems suitable. However from the technical point of view, it can

be measured only by losing so resultant efficiency of the engine should decrease.
According to another diagnostic investigation it can be established that this
parameter has minimal information. In cases of each simulated failure of the
engine, it decreases. Therefore it can be indicated only the fact of failure and aging
of the engine and it cannot get information about their feature. On the basis of these
reasons, you should disregard measuring of this parameter.

The correlation-matrix got by analysis mentioned above is:
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(12.17)

Figure 12.19. The Correlation Graph of the Engine Al-9V

The correlation-graph determined on the basis of the matrix above is shown in
figure 12.19, where the measured parameters are signed by thick curves.
The results of the above investigation have justified the decisions of designing

engineers.

12.4. Investigation of Prohibited Duty

Using mathematical model, the prohibited duties of the examined system can be
investigated without its break-down or damage. This chapter will show an example
of this very interesting possibility of use of mathematical models.
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The starter-engine Al - 9V has two duties that must not be used at same time.
They are:

Lair-topping” ;
The compressed air is tapped from after-compressor space to starter-turbines of
main engine of the helicopter to start them.

»generator” .
In this case the turbine propels the compressor and the starter-generator of Al - 9V
to supply the direct current electrical system of the helicopter.

When the author set up the thermodynamical model of the starter-engine Al-9V,
I remembered this practical question in that he was interested when he operated
helicopters MI - 24 D. Therefore, modifying the original mathematical model, the
author simulated this duty. For modeling that turbine propels the compressor and
the starter-generator, the following equation was used:

P =B — P —Ppen =0 (12.18)
instead of equation (11.19).
Results of Permissible
Parameter modified | original (nominal)
model value
temperature after the compressor 443 K 434 K
pressure after the compressor 307889 Pa 294344 Pa
temperature before the turbine 1251 K 1164 K
pressure before the turbine 289425 Pa 276684 Pa
temperature after the turbine 1050 K 979 K 1023 K
(750 °C)

pressure after the turbine 114020 Pa 112877 Pa
mass flow rate to main engines 0,403kgs?| 0,399kgs”| 04kgs™

Table 12.5. Results of Prohibit Duty Modeling

The results of the modified model (see table 12.5) show the following:

»  the temperature before the turbine T, has increased by 36 ° C;

> the temperature after the turbine T, has increased by 31 ° C and it has been
more than its maximal permissible value.

On the basis of the above mentioned facts, it can be established that the thermal
load of the turbine, which is the most structural and material problem of gas-
turbine engines, increased considerably. This increased temperature and thermal
load can damage the rotor blades of the turbine. Therefore, it can be stated that the
usage of this investigated operating regulation is justified.
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It is important to mention that the above mentioned investigation could be done
without the damage of turbine rotor blades, and only by using the mathematical
model of the starter-engine. This possibility of use is one of the most important
advantages of the mathematical modeling.






CHAPTER 13

APPLICATION OF THE MODEL FOR
IDENTIFICATION OF THE TECHNICAL
STATE OF THE SYSTEM

13.1. Introduction

The linear mathematical diagnostic model can be used to estimate the
momentary technical state of the examined system as well. For this investigation,

the parameters need to be classified that the vector &'y includes only the detectable

- external - parameters, and the vector o Xincludes the non-measurable - internal
ones [13].
On the basis of the above-determined vectors and their coefficient matrices A

and B should be determined
Asy=Box . (13.1)
Knowing the elements of the co;‘ficient matrices and values of internal
parameters (elements of vector Jy) of the equation (13.1), the values of the

internal parameters that is the elements of the vector ¢ X can be determined.
13.2. Methods of Identification
The vector dx can be estimated by two methods.

13.2.1. Case of Quadratic Coefficient Matrix

If the coefficient matrix of the internal parameters is a quadratic one that can be
inverted, you can use the diagnostic matrix

D= éfl B (13.2)
and the equation (13.1) can be rearranged to
Sy=A"Box=DSx . (13.3)
In this case you have to find the vector o X that satisfies the equation
y-Dbéx=0 . (13.4)

Therefore the minimum of the equation should be estimated
f(x)=y-Dox (13.5)
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using any numerical searching algorithm.

13.2.2. Case of Non-Quadratic Coefficient Matrix

If the coefficient matrix of the internal parameters A is not quadratic so it
cannot be inverted, you have to introduce the auxiliary vector

u=Asy . (13.6)
Therefore the equation (13.1) can be rearranged to
u=Bsx . (13.7)
Then, the vector X which satisfied the equation should be estimated
u-Bsx=0 (13.8)
that is the minimum of the scalar - vector function
f(x)= ‘g —E&x‘ (13.9)

should be estimated.
The vector ox that satisfies the equation (13.5) or (13.9) can be estimated by
using any search of optimum method.

13.3. Search of Optimum Methods

In the technical practice the following search of optimum methods are used
basically:

- GRADIENT METHOD;
- RANDOM METHOD;
> GAUSS-SEIDEL METHOD

The gradient method has been introduced in the Chapter 10.4.2.

The disadvantage of this method is that it can run to a local minimum point.
Therefore the Gradient method should be used by different initial points or with
any other optimum search method.

13.3.1. The RANDOM Method

The essence of the RANDOM-method is that a domain around the ,,zero-th
approximate point” is designed and point in this domain are chosen randomly. The
function value of these points is determined. The point that has the most minimal
function value should be chosen and a less domain around it should be designed.
The above-mentioned procedure should be repeated until the function value
decreases below the determined limit.
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Figure 13.1 The two-dimensional RANDOM Method

13.3.2. GAUSS-SEIDEL Method

The GAUSS-SEIDEL method is one of the most known relaxation ones to solve
the
Cz-r=0 (13.10)

type linear system of equation. Its principle is the minimum points along the axes
of the state space are searched successively.
Using this method, the elements of vector z should be modified one by one in
order to let the actual element of vector dy in equation:
Cz-r=d, (13.11)

equal to zero.
In this case the following iteration equations should be used:

=2, +V, (13.12)
vi=[0 ... 0 v, 0 ... 0] (13.13)
vkz—d—k (13.14)
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13.4. The Case of the Pneumatic System of the Helicopter Mi-8

In case of the pneumatic system of the helicopter Mi-8 the vectors oX and JYy

were separated so that the vector of external parameters includes ones that are
measurable even now. | applied this method, because it has to be used for a
helicopter that has not been designed for the on-condition maintenance.

sy =[dy My M, o o, &, &, M) . (1315
éXT:[é‘pc éFsl éFsz 5':53 531 éFl 532 éFz 553 éFs 534 éF4]
(13.16)

Knowing the external and internal parameters their coefficient matrices have
been determined.

K, 0 K, 0 0 0 0 o0
K, 1 0 0 0 0 0 0
K, -K, 0 K, 0 0 0 0
A=|-K, =K, 0 0 K, 0 0 0
K, K, 0 0 0 K, 0 0
K, K, 0 0 0 0 K, O
- K15 K14 1 - K16 - K16 - K16 - K16 - K12_
(13.17)
1 Ky K, 0 0 0 0 0 0 0 0 0]
Kk 0 0 -Kg 0 0 0 0O 0 0 0 0
0 0 0 0 Ky -1 0 0 0 0 0 0
B=l 0 0 0 0 0 0 -Kyy -1 0 0 0 0
o 0o 0 0 0 0 0 0 -Ky -1 0 0
0o 0 0 0 0 0 0 0 0 0 -Ky -1
K;3 0 0 0 0 0 0 0 0 0 0 O

(13.18)

Since coefficient matrix of the internal parameters was not quadratic one, the
equation (13.9) and the gradient method were used. The result of the investigation
can be seen in the following tables and figures.

Working time of the helicopter chosen for investigation was 52 hours 06
minutes (649.10 - 701.16) from 19" June to 20™ November. The following figures
show the test results depending on operating hours and depending on calendar
time.
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Date: 09.19.
Tail Number: XXX
Flying Hours: 673 .02

Ambient pressure: [torr] 753,5
Right Break-Shoes' Clearance: [mm]  0,30,4
Left Break-Shoes' Clearance: [mm]  0,40,45

Pressures [atm]

Prior to Breaking 475 45 435 42
After Breaking 45 43,5 42 40
Break 33,5 32 32,5 34

Table 13.1. Measured Data

Estimated Differences [%o]
1 pe -60,2181600
2 Fq 1,6574380
3 Fy -15,6758500
4  Fg -15,6471700
5 s -16,0464700
6 F; -11,8686600
7 s 0,0868354
8 F, -14,9381200
9 s -0,1951021
10 F; -14,4642500
11 s -0,2006741
12 F, -14,7801600
Break effort 0,4324500
Break Asymmetry 0,1037500

Table 13.2 Result of State/Estimation

SFs [%0]

1

0,8

0,6

04 =X,

0,2 \X

0
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Figure 13.2. Decrease of the Brake-Effort Depending on Operating Hours
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Figure 13.3. Decrease of the Brake-Effort Depending on Calendar Time
(of the Investigating Year)
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Figure 13.4. Brake-Asymmetry Depending on Operating Hours
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Figure 13.5. Brake-Asymmetry Depending on Calendar Time
(of the Investigating Year)



CHAPTER 14

APPLICATION OF THE MODEL FOR
MANAGEMENT OF THE OPERATIONAL
PROCESS

14.1. Introduction

Let general parameter 7 characterize the technical state of the investigated
system (see Figure 14.1). If the value of parameter 7 meets the n,, brake value, the
system will break-down. Let 7 be the parameter which characterizes the
performance of the system. For example, this parameter can be the effective
calendar time, effective flying hours (in case of the airframe), number of landings
(in case of landing gear systems), or number of starts (in case of gas-turbine
engines) from installation or the last overhaul.

n

LD

f(n,™

Figure 14.1 The Wearing-out Process

In this case the wearing-out process of the system, that is the 7(z) stochastic
function can be characterized by:

ﬁ(r) - the expected value function of the parameter 7 ;
f(7,7) - the density function of parameter 7.

Then the probability of good working state of the system:

Tor

Pou()= Pl > ()= [ Fln.o)dr (14.1)

—00
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The process of changing of parameter 7 can be described by:

n(r) - the changing velocity of the parameter 7 ;

go(n, rj - the density function of the changing velocity.

Then the "failure changing velocity" of parameter 7 is:
o _ T .
My (7, A7) = =R AZ )it g le) (14.2)

and the probability of good working state of the system in the interval (77, n+A4n):

o o Mor o o
Paur:07)= (1 () 10) )= [ o e o @43
supposing that the system is ready to service at the start of the investigated
performance interval.

14.2. Operational Management Method

For exact and manageable comparison of different technical states and
management of the operational process, the so called "leader parameter” should be
introduced. The leader parameter can be the most important one for the operation
and the maintenance of the system. This should be one of parameters estimated
above (see Chapter 13) or a parameter which can be determined directly from
internal ones. For example, the leader parameter can be the thrust or useful power
in case of gas-turbine engines.

Depending on the momentary values of the leader parameter and its velocity,
the needed service work can be decided. For decision, permissible value and
permissible velocity of the leader parameter should be determined on the basis of
its breakdown value and permissible probability of risk.

Knowing the breakdown value 7, of the parameter 7 and performance interval
between checks A4z, the permissible value 7, and the permissible changing velocity
to ready for working should be determined. Supposing that:
= the change of the parameter 7 on interval Az (see Figure 14.2) is a linear

one;
= the density function of the changing velocity is independent on working
performance of the system.

14.2.1. Determination of Permissible Velocity

If the value of the parameter 7 reaches the permissible value 7, at the i-th

checking and it changes with
o An
> _
i At



APPLICATION OF THE MODEL FOR MANAGEMENT OF THE OPERATIONAL PROCESS 135

velocity, the parameter 7 is going to reach the breakdown value 7, before the next
(i+1-th) check, in other words the operated system will break-down.

i1 7 T+]
Figure 14.2. Determination of the Permissible Parameter Values

Therefore, permissible velocity of the parameter 7 to ready for working is:

o An
=— . 14.4
T =4 (14.4)
The probability of breakdown is:
. . .
Ry (A7,Am) = P(n > m,rj =1- P(n < nbr) =1- f(o(n)d n (14.5)

Knowing the permissible probability of risk Q (permissible probability of
breakdown), it is substituted into equation (14.5), equation

Q="R,(Az,An) =1~ [p(n)d y (14.6)

is got.
14.2.2. Determination of Permissible Value

If the density function of velocity 7 cannot be determined by statistical

method, the usage of one of the well-known density functions is suitable. For
example:

- UNIFORM distribution:

o 1 1 . o o o
on)=————"—=—"—" (7. >7>7u) (14.7)
17 max — M min A?]
Then
", i °
Q=1- Iiud p=1-To_q AN (14.8)
~An An ATAn

that is
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Ap=(1-Q)AAn . (14.9)
. EXPONENTIAL distribution:
o) =2 (ifn>0 . (14.10)
Then
Q=1-¢"™ , (14.11)
and
Aq:_@Ar . (14.12)

- NORMAL (GAUSS) distribution:

(-m)?

e 2o . (14.13)

p(n) =
oN2r
In this case simpler solution cannot be got like to above ones which is deduced
easily by any algebraic way. Therefore, on the basis of its variance and expected
value, transforming the normal distribution to the standard normal one, the
permissible velocity of parameter 7 and parameter interval Az can be determined.
The permissible value of the parameter 7 to ready for working:

Mo = Mo — An . (14.14)

If momentary values n and 7 smaller than those permissible ones determined

by equation (14.14) and (@6.4), the system will not break down till the next check
with probability of least 1-Q.

14.3. Case of Pneumatic System of Helicopter Mi-8

Using result of the state-estimation of pneumatic break-system of helicopter
Mi-8 depicted in Chapter 13, the operation management method and process will
be shown.

The decrease of the brake-effort and brake asymmetry were chosen as leader
parameters. To determine the permissible value and the velocity of this leader
parameters,

Q =0,025
the permissible probability of risk was used.

The quantity of data is not sufficient for statistical estimation of their
distribution. Therefore, for determination of the permissible value and velocity of
the resultant brake-effort, the density of its changing velocity is supposed as an
uniform one - see equations (14.7); (14.8) and (14.9).

Flying hours of the helicopter chosen for investigation was 52 hours 06 minutes
(649.10 - 701.16) from 19™ June to 20™ November. The following figures show the
test results depending on the flying hours and depending on the calendar time.
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Table 14.1. shows the estimated values and permissible values of leader
parameters and their changing velocities. The following figure shows the changing
velocities of leader parameters depending on flying hours and calendar times. Their
momentary values are shown in Chapter 13. ( see Figures 13.2. - 13.5.).

Number of Check l. Il. 1. V. V.
Data 06.19. | 09.19. | 10.02. | 10.30. | 11.20.
Flying Hours 649.10 | 673.02 | 683.10 | 694.39 | 701.06
Atg [day] | ——— 77 28 28 21
At, [fhours] | —— 23,87 10,13 09,48 06,62
Break effort[%%] 0,65655 | 0,43245 | 0,13550 | 0,25030 | 0,38770
Permissible Value [%o] 91,5
Dep. on Cal.Time [day™] | ———— [-2,9110°]-1,06 10° | 4,1010° | 6,54 10°
Perm. Value [day™] 8,10 10°
Dep. on F. Hours. [fh.7] | — [ -9,4210°] -2,9310° | 1,21 10° | 2,08 10°
Perm. Value [f.h.] 435107
Break Asym. [%s] | 020645 | 0.10375 | 0,10390 | 0,10345 { 0,00000
Perm. Value[%o] 25
Dep. on Cal.Time [day”] | ————— [-1,3310°] 53610° | -1,6110°|-4,93 10°
Perm. Value [day™] 2,95 10°
Dep. on F. Hours. [fh.*] | ——— [-4,3010°| 1,4810° [-4,75 10| -1,56 10°
Perm. Value [f.h.] 1,90 10°
Notice [ good | good | good good

Table 14.1. Result of the Operation Management Method

doF,
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Figure 14.3. Changing Velocity of the Brake-Effort Depending on Flying Hours
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Figure 14.4. Changing Velocity of the Brake-Effort Depending on Calendar Time
(of the Investigating Year)
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Figure 14.5. Changing Velocity of Brake-Asymmetry Depending on Flying Hours
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Figure 14.6. Changing Velocity of Brake-Asymmetry Depending on Calendar
Time (of Investigating Year)



CHAPTER 15

APPLICATION OF MODELS
TO INVESTIGATE EFFECTS
OF MANUFACTURING ANOMALIES

15.1. Introduction

During the design of new aircraft system the determination of manufacturing
tolerances is a very important task. When the manufacturing tolerances of system
components are determined, the influences of their probable manufacturing
anomalies on the external parameters of the system should be investigated. This
chapter will show the methodology the usage of mathematical diagnostic models to
investigate influences of manufacturing anomalies and its inverse method.

It is possible that system parameter values are inadequate, but every unit and
element of the system meet its own requirements. Because of the manufacturing
tolerances of units or elements have been determined incorrectly.

It is possible too, that working requirement of the system determine strictly the
system parameter tolerances. For example, such system requirements can be
velocity or acceleration of the piston of hydraulic servo actuator, in the flight
mechanical point of view. These external parameters should require the tolerances
of internal parameters of the system strictly.

Using linearized mathematical diagnostic model of the given system the
problems mentioned above can be investigated and solved.

Manufacturing anomalies of internal parameters can be characterized by their
densities, expected values and variances. These random characteristics determine
the densities, expected values and variances of external parameters so their
manufacturing anomalies.

For investigation, the following matrices and vectors should be introduced [11]:

= Matrix of nominal values of the internal parameters;
X, o ... 0

nom

0 x :
X=| . e : (15.1)

Prom
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o Matrix of nominal values of the external parameters;

y, 0 .. 0
0 :

Y=| . Yo : (15.2)
0 v e Yy

nom

= Vector of measured variances of internal parameters;
=R % . %] (15.3)

= Vector of measured expected values of internal parameters.
=k % .. %] (15.4)

15.2. Case of the ""Gauss Distributions""

Now suppose that manufacturing anomalies of the internal parameters are
interdependent random variables with normal distribution.

In this case the expected values of internal parameters are the means of their
tolerance zones. It is important to mention, if the tolerance zones are asymmetric,
the expected value will not be equal to the nominal value of the given parameters.

The variance of this parameters should be determined as a sixth parts of
tolerance zones due to the so called "3c-rule”. Because the random variables of
normal distribution with expected value m and variance o will fall "practically
certainly" in the (m-3c, m+3c) interval - its probability in fact is 0,9973 [23].

15.2.1. Determination of Variances

To determine the variances of external parameters, the vector of relative
variances of interval parameters should be determined by equation

SR=X"1x . (15.5)

Using the diagnostic matrix of the investigated system, the vector of relative
variances of external parameters is:

§9=Ds%=X"'1D% . (15.6)

Knowing the nominal values of the external parameters, the vector of their
measured variances should be determined by following equation:

J=Y59=x"'DY% . (15.7)
Introduce the "measured diagnostic coefficient matrix":
s=x"'by , (15.8)

the equation (15.7) can be simplifigd:
y=56

|><>

(15.9)
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15.2.2. Determination of Expected Values

To determine expected values of external parameters, the vector of relative
expected values of integral parameters should be determined. Because the
diagnostic model describes interdependencies between relative changes of internal
and external parameters, this vector should show the relative values of difference
between measured expected and nominal values to nominal ones. Therefore, using
the p-dimensional summation vector e, (every element of the vector is equal to 1):

&:X_xnom

Xnom

that is (15.10)
5% = X (X - Xe,)

Knowing the diagnostic matrix, the vector of relative expected values of external
parameters should be determined by equation

5y =DsX = X 'D(X - Xe,) (15.11)

Then, using the matrix of nominal values of external parameters and the k-
dimensional summation vector g, , the vector of measured expected values of
external parameters should be determined:

§=Yoy+Ye, =XT'DY(X-Xey)+Ye . (1512)

Applying the measured diagnostic coefficient matrix S - see equation (15.8) - the
equation (15.12) can be simplified:

y=S(X-Xe,)+Ye . (15.13)

Knowing the variances and the expected values of external parameters, their
"manufacturing tolerance zones" that are result of manufacturing anomalies of units
and elements of the system can be determined. These interval should be determined
using the ,,3c-rule” mentioned above, that is the vector of their minimum values:

Xmin 22—32 , (15.14)
and vector of their maximum values:

Yoy =939 (15.15)

15.3. The Inverse Method

It is possible, that task and work of given system limit strictly output parameter
values and their tolerances determined by equations (15.14) and (15.15) cannot
meet these requirements. Then the manufacturing tolerances of internal parameters
have to be determined on the basis of the required tolerances of the external system
parameters. This task can be solved by the inverse method of the problem.

The required variances of the internal parameters should be determined by

equation (15.9). The vector X that satisfies the equation
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f(X)=(§-S%)*=0 (15.16)

should be estimated by using any search of optimum method.
For determination of required expected values of internal parameters the
equations (15.13) should be rearranged

y-Ye, =S(X- Xe,) (15.17)
and auxiliary vectors
u=y-Ye, (15.18)
and
v=X-Xe, (15.19)
should be introduced. Then the equation (15.17) will modify to the following form:
u=3sv . (15.20)

On the basis of the auxiliary vector U - see equation (15.18) - and tolerance
coefficient matrix S - see equation (15.8) -, the auxiliary vector v should be
estimated by using scalar-vector function

f(v)=Uu-sv)* . (15.21)

Then the vector of the expected values required of internal parameters should be

determined by equation
X=Vv+Xe, . (15.22)

The vectors of minimum and maximum values of the required manufacturing
tolerance zones of internal parameters:

Xmin = X-3

[><>

(15.23)
and
Xmax =X +3X . (15.24)
These data have to be investigated from the technological and the
manufacturing point of view. If the technological possibilities do not meet the
required quality, on the basis of the practicable tolerance zones of the internal
parameters should be determined and the base investigation should be performed
once more while the external system parameters will meet the requirements. ,,Use
the inverse method of the inverse method.” It is also important to mention that this
method does not give the unambiguous solution of the technical problem
mentioned above. Because it uses any estimation process. This method is ,,only” an
effective adjuvancy to determine the most practicable manufacturing tolerances of
the internal parameters during the design of the system.

15.4. Case of Unknown Distributions

The next step is supposing that the measures of made elements of the examined
system have unknown distributions, but they are independent random variables.

Then the expected (X ), maximum (Xmax) and minimum values (Xmin) of internal
parameters should be determined and arranged into vectors.
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Using the equations (15.10) - (15.13), the expected values of external
parameters can be determined.

To determine the possible maximum and minimum values of external
parameters vectors of relative values of the internal ones should be determined:

X = X (X — X€,) (15.25)

SXmin = L_l(lmin _Lgp) . (15.26)

The so called ,,positive diagnostic matrix” and ,,negative diagnostic matrix”
should be introduced. Elements of first the one are the positive-sign elements of the
original diagnostic matrix - or zero:

5 q dij if dij >0 1527

=+ |+t 1o if dij<0 . (15.27)

Another one's elements are negative-sign elements of the original diagnostic
matrix - or zero:

D -D-D, . (15.28)

Knowing the above mentioned matrices, the vectors of relative maximum and
minimum values of the external parameters:

S max = 2.4 9%max + D_6Xmin , (15.29)
Y min = 21 0%min + D_0Xmax : (15.30)
That iis, using equations (15.25) and (15.26)
-1
§Xmax = L [2+ (lmax_égp)+27 (lm]n _igp)] 1 (1531)
-1
é‘Xmm = L [2+(lmln _Lgp)—"_Q_ (lmax_igp)] . (1532)

Then use the nominal values matrix of external parameters and the k-
dimensional summation vector, the vector of the maximum values of external
parameters:

Ymax — Lili[QﬁL(lmax —Lgp)+2_ (Xmin _Lgp)] +Yer (15.33)
and the vector of their minimum values:
Ymin = i_li[QJr (Xmin—Xep)+D_(Xmax _Lgp)] +Yer . (15.34)

In case of unknown distributions the inverse method of the problem cannot be
solved. Then it is acceptable that you suppose normal distributions of internal
parameters and use the inverse method depicted by the Chapter 15.3. to estimate
the required manufacturing tolerances of internal parameters of the designed
system.






[1]
[2]

[3]
[4]

[5]
:
[8]
[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

BIOGRAPHY OF PART II.

DaNILoV V. A,, Vertolet Mi-8, Transport, Moszkva, 1988.

DANILOV V. A., DRUGOV A. G., TETERIN I. V., Vertolet Mi-8,
Transport, Moszkva, 1979.

FAZEKAS F., Alkalmazott matematika, Tankdnykiadd, Budapest, 1979.
FOWKES N.D., MAHONY J.J., An Introduction to Mathematical
Modelling, John Wiley & Sons, Melbourne,1994.

GYURKoViICS |., Mezdgazdasagi replildgepek diagnosztikai
vizsgélatokra épuld Uzemeltetési és javitasi rendszere, egyetemi doktori
értekezes, BME. Kdzlekedésmernoki Kar, Budapest, 1978.

HEINRICI P., Numerikus analizis, Mlszaki Kényvkiado, Budapest, 1985.
KORN G. A., KORN TH. M., Matematikai kézikonyv miszakiaknak,
Miszaki Koényvkiadd, Budapest, 1975.

LEwWITOWICH J., Aircraft Diagnostic in Theory and Practice of
Logistics, Proceeding of the AIRDIAG'95, Warsaw, 1995. 13 - 26.
LUDANYI L., A replildtechnika korszer( lizemeltetési modszerei, Légi
jarmavek lizembentartasanak aktudlis kérdései, Szolnok, 1992., 67 - 89.
ORY H., Structural Design of Aerospace Vehicles 1., 111, Intitut fur
Leichtbau, Achen, 1991.

POKORADI L., Study of Influences of Deviations in Operational
Parameters by Using the Airplane Pneumatic System, Proceeding of 1st
Mini Conference on Vehicle System Dynamics Identification and
Anomalies, Budapest, 1988, 421 - 429.

POKORADI L., Repuldgépek levegdrendszer matematikai diagnosztikai
modellje, egyetemi doktori értekezés, BME Kozlekedésmérnoki Kar,
Budapest, 1989.

POKORADI L., A matematikai modell felhasznélésa a repiilégép energia-
rendszerek allapotbecslésére. Tudomanyos Kiképzési Kozlemények,
MH. KGyRMF., Szolnok, 1990/4 45 - 49.

POKORADI L., Helikopter levegbrendszer matematikai modellvizsgélata,
A Replilés Vilaga, 1990/1 29 - 31.

POKORADI L., A matematikai modell, Tudomanyos Kiképzési
Kdzlemények, MH. SzRTF., Szolnok 1993/1 30 - 40.

POKORADI L., Mi a matematikai modell?, Haditechnika, Budapest,
1993/4 2 - 5.



146

[17]

[18]

[19]
[20]

[21]

[22]

[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

BIOGRAPHY OF PART II

POKORADI L., Uzemi paraméter-eltérések hatasainak vizsgalata a
repuldgép pneumatikus rendszer matematikai modelljének
felhasznalasaval, Tudoméanyos Kiképzési Kézlemények MH.SzRTF.,
Szolnok, 1993/2-3 92 - 101.

POKORADI L., Diagnostics of the Aircraft Pneumatic System Based on
Mathematical Modeling, Proceeding of the AIRDIAG '95, Warsaw,
1995., 59 - 69.

POKORADI L., A korrelacios-csalad vizsgalat, Jarmavek, Epitdipari és
Mezdgazdasagi Gépek, 1998. januar (45. évfolyam) 23 - 28 pp.
POKORADI L., Mi - 8 helikopter sarkanyszerkezet I. 1l., jegyzet,
MH.KGyRMF., Szolnok, 1991.

POKORADI L., Repildgépek Uzemeltetési folyamatainak markovi
modellezése, kandidatusi értekezés, MTA. Doktori Tanacs, GKSzB.,
Budapest, 1996.

POKORADI L., SzaBOLCSI R., Aircraft Operation Management Based
on State-Estimation, Proceedings of 21* ICAS Congress, 13-18
September 1998, Melbourne, Victoria, Australia (CD-version)

RENYI A., Valdszin(ségszamitas, Tankdnyvkiado, Budapest, 1982.
Repulési lexikon, Akadémiai Kiado, Budapest, 1991.

ROHACS J., SIMON 1., Replldgépek és helikopterek Gizemeltetési
zsebkonyve, Maszaki Kényvkiadd, Budapest, 1989.

SzABO 1., Gépek és folyamatok rendszertana, Tankényvkiadd, Budapest,
1992.

SzUcs E., Hasonldséag és modell, Mlszaki Konyvkiado, Budapest, 1972.
SANTA 1., Gazturbinas hajtomavek termodinamikai modellezése és a
modellek alkalmazasa, kandidatusi értekezés, TMB.EnSzB., Budapest,
1993.

SANTA 1., Repll6gép hajtdémivek nemlinearis termikus matematikai
modelljeinek vizsgalata, 1X. Magyar Repuléstudomanyi Napok,
Budapest, 1988, 201 - 213.

VALKO P., VAIDA S., Miszaki-tudomanyos feladatok megoldasa
személyi szamitogéppel, Miszaki Kényvkiadd, Budapest, 1987.



	MB-12 / PAMM
	INVESTIGATE AIRCRAFT SYSTEMS
	László POKORÁDI -  Róbert SZABOLCSI 
	MB-12
	Lt. Col. L. POKORÁDI  –  Lt. Col. R. SZABOLCSI

	           Budapest                                    Szolnok

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

